Connect with us

Dogs

Preparing Your Dog for a New Arrival (new baby)

Planning ahead for how your schedule will change and implementing some of
those changes before the arrival of a new baby can greatly decrease stress for
dog and family, giving everyone time to adjust to the new schedule and
environment. For example, what if Mom is the one who takes the dog for
walks during the day but suspects she will not have time or that walks will be
shorter once the baby arrives? Another adult can begin walking the dog on
her regular schedule, decreasing the time allotted for walks, before the baby
comes.
Life gets hectic when a baby is added to the family, and it may be
necessary to separate the dog and child, particularly when the child begins
crawling and toddling. Start by buying any equipment you may need for
separation—baby gates or a crate for the dog. Then spend time working on
teaching your dog how to be comfortable in her safe refuge. Remember to start slowly.
Some baby equipment may seem scary to a dog, such as strollers, walkers,
swings, playpens, playmats, and Pack ’n Plays. Try to introduce some of this
equipment before the baby arrives, so the dog can become familiar with it.
Remember, activity centers and swings are not safe places to leave a baby
unsupervised while a dog is present. The dog should be behind a baby gate or
in her crate when a baby is in one of these unless a responsible adult is
present and supervising. Supervising means actually being present, so if you
leave the room, even briefly, a crib or playpen may be the safer place to put
the baby.
New Baby Checklist
Make any changes in the schedule or environment before the baby
comes home.
Desensitize your dog to noises and items associated with babies.
Consider using an audio recording, 
Practice walking the dog with a stroller alongside.
Plan for controlled, careful initial introductions between the dog
and a new baby.
Consider denying the dog access to elevated surfaces (sofas and
beds, for example,) when the child becomes more mobile, by
giving the dog her own separate and safe resting place instead.
There is a greater risk of the child approaching the dog while she
is resting on a couch or chair and possibly triggering a territorial
or resource-guarding response. The added concern here is that
the child’s face may be more vulnerable to a severe bite when
the dog is elevated.
Speak with your veterinarian if your dog has a history of
growling or snapping around food, treats, toys, or unfamiliar
people. Your veterinarian may refer you to a veterinary
behaviorist before the baby arrives.
If you plan on sleeping with the baby in your bed but the dog currently
sleeps with you, begin long before the baby is born to change the dog’s
sleeping habits. Give her a new dog bed, near your bed if possible, and with
praise and patience, the dog can learn to sleep in her own bed. This can be
difficult at first, and sometimes tethering the dog where she can only be in
her own bed will help with this process. Waiting until after the baby comes
home to make these types of changes only makes them more stressful for
everyone.
Some dogs are helped by getting them used to the noises associated with
babies. This process of gradually getting accustomed to something new is
called “habituation.” There are excellent commercial recordings available to
help with this. These
recordings include all kinds of sounds, including crying babies. Playing them
at a very low volume while feeding the dog very special treats can help the
dog associate good feelings with those sounds rather than associate feelings
of fear or anxiety. Over time, increase the volume. If the dog acts anxious
(panting, licking, ears back), you’ve pumped up the volume too far too fast. If
you begin working on this several months before the baby is born, spending
just a few minutes every day, the dog is likely to be much more comfortable
with the sounds associated with the baby.
Dogs are very aware of smells in their environment and eagerly wish to
investigate any new odor. Bring her some of the baby’s clothing or blankets
before the baby actually comes home, and allow the dog to sniff these items
and familiarize herself with the smells associated with the newborn, including
all baby-care products. Keep in mind, many dogs quickly adjust to these
changes and no special arrangements will be needed.
If you have friends or relatives with babies or young children who are calm
around dogs, invite them to spend time at your home so your dog can
experience and adapt to the presence of young people. Having the parents of
the infant, or the young children themselves, toss treats to your dog can help
develop a positive association with children for your dog.
If you live in an apartment, condominium, or another home where it is
necessary to take your dog for regular walks, especially for elimination, begin
practicing walking the dog while also pushing a stroller. Bring the stroller
into the home and allow the dog to become familiar with its presence. If the
dog is afraid of moving objects, rolling the stroller back and forth while
giving the dog treats may help associate the stroller with something pleasant.
When the dog is comfortable with the presence of the stroller, begin walking
her with the empty stroller alongside.
If the dog is a challenge to walk (tugging and pulling on the leash, for
example), consider using a canine head halter (such as a Gentle Leader or
Halti) or a no-pull body harness (such as Easy Walk or Freedom Harness).
These devices are excellent aids allowing for good, safe control of the pulling
dog. Also, use these walks to practice basic obedience
skills with the dog. Improving the dog’s responsiveness to requests such as
“sit,” “stay,” and “come,” before a new baby arrives, will make it easier for
the dog to be safely included in family activities. If the dog continues to show
signs of distress or makes walking with a stroller difficult, seek help from
your veterinarian or a veterinary behaviorist for a more complete training
program or for a referral to a qualified trainer.
If your dog exhibits excessive attention-seeking behaviors, such as pawing,
barking, or jumping, these problems should also be addressed before the baby
arrives. If you have a dog who has previously shown signs of aggression
around food, treats, or toys, consult a qualified veterinary behaviorist before
trying any of the exercises described here. But remember, all dogs deserve to
eat in peace and quiet. Find a secure room or crate to feed the dog to prevent
interruptions during her mealtimes.
Older Dogs and New Babies
An aging or geriatric dog may have an especially difficult time when
new children join the family. As a dog’s age and develop more aches
and pains, they are likely to be less tolerant of any roughhousing or
even accidental injury by a child.
Be empathetic with your senior dog. It’s not fair to expect her to
interact with children in the same way that a young dog might. It will
be even more critical than the old girl has a safe refuge to get away
from the hustle and bustle of a household with children. And always
seek veterinary help to ease any pain or treat any illnesses in an
elderly dog.
Bringing Home Baby
When it is finally time to bring your little one home, careful planning can
ensure that your dog’s first exposure to the new baby is a positive one. It
might be best for the new mother to greet the dog empty-handed while the
other parent holds the baby, especially if greetings tend to be vigorous. Once
the initial greetings are over and the dog has calmed down, it’s time to
introduce the dog to the baby.
Make sure that the introduction takes place when the baby is either
sleeping or awake, but not crying. Have the dog on a leash with a responsible
adult controlling the leash. The other parent can sit with the baby and allow
the dog to approach and sniff the baby. If the dog is easily excitable or very
nervous, do this gradually, with the person holding the leash frequently
calling the dog back to them and giving treats while rewarding the dog for
staying calm. If the dog becomes too excited, gently take her away and
engage in some play with a toy, or give the dog treats in exchange for her
responding to some simple requests, such as “sit.” Or take her to her
prearranged safe refuge.
Never punish the dog in this situation for acting too excited or fearful.
This will only cause her to associate unpleasant experiences with the
baby. Simply remove her from the situation if she becomes too unruly
and tries a gradual introduction again the next day.
Never force the dog to investigate the baby. Allow your pup to approach
when she is ready but always under your supervision and control.
Never dangle the baby in front of the dog for the dog to sniff. Allow the
dog to approach and sniff the baby’s legs. Dogs have an excellent sense
of smell; even if the baby is several feet away and the dog is sniffing the
air and showing interest, the dog is becoming familiar with the baby’s
the scent in a very relaxed and non-threatening situation.
Give the dog treats while she remains comfortable in the baby’s
presence, to help reinforce a positive association with the baby.
If the dog freezes or stiffens and stares intently at the baby for more than
a few seconds, calmly and quietly remove the dog and contact your
veterinarian before attempting any further introductions.
Ted and Paula sought a behavioral consultation a few months after
bringing home their first child, Shawn. They were concerned that their dog,
Truffles was moping around the house whenever Paula was busy with the
baby, and when the baby was placed in his crib for a nap, Truffles became
very excited and pestered Paula extensively for attention. Paula realized that
she did not have as much time for Truffles as she used to and worried that
Truffles would be jealous of the new baby.
They were really hoping that Truffles and Shawn would become good
friends as they grew older together. Fortunately, Ted and Paula had been very
careful about not leaving Truffles unattended with the baby, and Truffles had
not shown any aggression toward the baby or shown any fear associated with
the baby or any of the baby’s items. There were several things that could be
done to help Truffles view the baby in a more positive light:
Pay more attention to Truffles when the baby is present rather than when
the baby is sleeping or in another room. This can be done by talking to
the dog in an upbeat tone and verbally rewarding her for calm,
appropriate behaviors or tossing her treats just for approaching and
behaving calmly. This way, Truffles learns to associate good things with
the presence of the baby.
Ignore all of Truffles’s attention-seeking behaviors, such as pawing or
jumping.
Always walk Truffles when taking the baby out in the stroller. If
possible, avoid walking Truffles at other times, so she associates the fun
of the walks with the presence of the baby.
Whenever it is necessary for Truffles to be separated from the baby by
the baby gate, give her a very special long-lasting treat, such as a food
puzzle toy, so she views these separations as pleasant distractions.
Have a bowl of Truffles’s food by the owners’ side when sitting and
rocking or feeding the baby. Toss Truffles a piece of kibble every time
she approaches and makes eye contact with you. Once she is doing that
comfortably, ask her to perform a behavior she knows, such as “sit,” and
toss her a kibble for approaching, sitting, and making eye contact.
Hide-and-seek is another fun game to play while holding the baby,
especially if the baby is in a sling. Ask Truffles to sit and stay while you
walk to another room with the baby. Then call Truffles, saying, “Where
is Shawn?” in an excited, happy tone of voice. When Truffles finds you
and the baby, toss her a treat.
Two months later, Paula reported that Truffles had really been enjoying the
changes in the routine. She reported that Truffles seemed more comfortable
just sitting quietly in the room when she was busy with Shawn and that
Truffles got excited whenever the stroller was brought out of the closet for a
walk because Truffles knew that she would get to go

Continue Reading

Dogs

Dog Basic Training

Would be able to adapt to novel tasks. But there was only one way to
find out for sure.
Helen, eager to see how Callie would do with the training, helped me
load her into the car, and the three of us headed to CPT with the head coil to
see Mark work his magic.
Helen entered with Callie, while I placed the head coil on the floor.
Mark looked at it and nodded. “This should be easy. Did you bring
treats?”
From puppy training, I knew that soft treats are best. You can cut them
up into tiny pieces so the dog doesn’t fill up too quickly. And the dog can
consume them easily without getting distracted by crunching on a hard
biscuit. The only treats I could find around the house were some hot dogs that
had been pushed to the back of the refrigerator. I had no idea how long they’d
been there, but they smelled okay, and Callie loved them. I handed Mark a
baggie full of sliced-up hot dogs.
“First,” he said, “let’s start with the clicker.”
A training clicker is a small device about the size of a USB flash drive
that, unsurprisingly, makes a loud click when pressed. Dogs can hear the
clicker from across the room. The advantage of using one is that it always
makes the same sound, which is not the case with vocal commands. Because
it’s almost impossible to screw up, the clicker is a useful tool for beginners
like me. Its operation is simple: when the dog does something correct, you
click. For this to work, however, you first have to teach the dog that a click
equals a reward. This is classic classical conditioning. Just like Pavlov.
Callie tracked the bag of hot dogs as I handed it to Mark. Then she
dutifully sat at his feet, tail sweeping the floor. Mark clicked and immediately
gave her a piece of hot dog. Callie got even more excited. She could barely
sit.
At this point, what Callie was doing was unimportant. Mark
periodically clicked and handed her a reward. He was establishing the
association of each click with a transfer of reward, making it a conditioned
stimulus. It didn’t take long. A dozen click-rewards, and Callie understood
the association. With the meaning of the clicker established, Callie was ready
to learn a behavior. I could immediately see how the clicker was going to
make this easier.
Mark explained another advantage of using the clicker. “We are going
to shape her behavior. Initially, anything Callie does that is close to the
desired behavior will be rewarded. The clicker makes it absolutely clear to
her that she has done something correctly. This way, she won’t get
conditioned to just my voice or your voice.”
The clicker gives instantaneous feedback, making it clear to a dog that
she has done something good without wasting time fumbling for the treats.
Unlike a human, a dog’s memory for what she has just done appears to be
very limited. The longer the interval between the desired behavior and the
subsequent reward, the less likely the dog will make the association. This
phenomenon is called temporal discounting. Research in rats suggests that a
reward given four seconds after a desired behavior is roughly half as effective
as one given immediately. If the handler is deeply involved with the dog,
using hand signals and vocal commands, he might not be able to give a
reward for a while. This is especially true of complex behaviors. The clicker
solves this problem by giving instantaneous feedback.
Mark was beginning to lure Callie into the head coil. Reaching into the
coil with a hot dog in one hand and the clicker in the other, Mark had already
succeeded in getting Callie to place her nose inside. Each time she did so,
Mark clicked, praised her, and gave her a bit of hot dog.
With every click-reward, Mark pulled the food back a little bit, shaping
her behavior gradually. Within ten repetitions, he had Callie crouching in the
coil with her snout poking out the other end. Some gentle pressure on her
rump indicated that she should lie down in the coil. As soon as she did, Mark
clicked and exclaimed, “Good coil!” Callie wagged her tail and licked the hot
dog from his hand.
I couldn’t believe how quickly Mark had gotten Callie where she
needed to be.
“How is the positioning?” he asked.
Callie was lying down in a sphinx position in the coil. Her paws hung
over the near edge. She would need to move back a little bit.
“We’ll want her head in the center.” Mark nudged her back an inch and
clicked.
“You can shape her behavior at home too,” he said. “I think she’ll do
really well with this.”
A woman walked into CPT with a border collie.
“This is Melissa Cate,” Mark said. “Melissa runs some of our agility
classes at CPT. She’s interested in volunteering her dog for the MRI.”
“Mark told me about the Dog Project.” Pointing to her dog, she said,
“This is McKenzie.”
McKenzie was Melissa’s three-year-old border collie. Melissa had
begun agility competitions a few years earlier with her boxer, Zeke, who had
reached the highest ranks. Zeke was now eight years old and slowing down a
bit, so Melissa had gotten McKenzie as a puppy to keep competing in agility.
They had been going strong ever since.
McKenzie was leggy and lean, about thirty-five pounds, with a long,
thin head that would easily fit in the head coil. She trotted over to me and
stared long and hard. She quickly realized that I was not a herdable animal
and moved on to check out Helen.
Callie zoomed over and assumed a play bow with her front legs flat and
her rump in the air, tail wagging like a vibrating string. We let the two dogs
off-leash and they ran around the room. Callie did orbits around McKenzie,
who seemed indifferent to the newbie dog.
It was time for McKenzie’s try with the head coil. With a dog treat,
Melissa had no trouble coaxing her into the coil. Nibbling the food out of
Melissa’s hand, McKenzie appeared unaware of the coil altogether. In agility
competition, the dogs run through a serpentine tunnel, and McKenzie was
completely comfortable in an enclosed space.
After a few minutes, Melissa commanded McKenzie to lie down.
“Platz,” she said, using the German word for “down.” Mark explained that
German words are commonly used in dog training because of the popular
Schutzhund competitions. These began as training programs and tests for
German shepherds but evolved into a full-fledged sport involving tracking,
obedience, and protection phases.
With McKenzie lying down in the head coil, Melissa backed away to
the other side of the room. McKenzie didn’t budge. In fact, she stayed
motionless for a solid minute. When I saw what a well-trained dog like
McKenzie could do, I knew we could really do this. If the dogs would go into
the head coil, they would go into the MRI.


Continue Reading

Dogs

The Scanner Dilemma

H I L E A N D R E W A N D I W E R E pretty sure we could figure out how to
scan a dog’s brain, we had neglected to consider a minor, though
important, detail: Where? The Dog Project needed a home.
The lab had been captivated with the “big question”—figuring out what
goes on in a dog’s brain. Details like the type of brain scanner, or where to
find it, were just that: details. Up until this point, I hadn’t been concerned.
The best part of being a scientist is when the ideas are coming so fast and
furious that you can’t even write them down. You don’t have time to worry
about details. They just get in the way.
But eventually, we had to confront the practical aspects of pulling this
off. And the first detail was finding an MRI facility that would let us bring
dogs into its scanner.
Yerkes National Primate Research Center, located about a mile from the main
Emory campus was our first choice for MRI scanning. Nestled in a valley
lined with southern pines, Yerkes seemed ideal. It was a short drive from the
lab, so we could easily move our equipment there. And because it was off the
main street, it was also quiet and peaceful. The last thing we wanted was to
scare a potential canine subject with a trip through a busy intersection. From
a dog’s perspective, I imagined Yerkes would look like a walk in the woods.
Yerkes also specialized in the study of animals—primarily monkeys.
Andrew and I congratulated each other on our good fortune. We had come up
with the idea of scanning the brain of a fully awake dog, and one of the
premier facilities for the study of animals turned out to be right in our
backyard. In fact, there are only eight such facilities in the United States.
Yerkes even had an MRI scanner dedicated specifically to the study of
animals. A friend and colleague of mine, Leonard Howell, was director of the
Yerkes Imaging Center and invited us to take a look at how they scan
monkeys’ brains.
Although the Yerkes MRI center is unusual in the sense that it was
purposely built for the study of how primate brains function, it is actually not
that unusual to have such a facility at a veterinary school or even at a high tech
veterinarian hospital. Any and all medical diagnostic tests performed on
humans are now also done on animals. The challenge with obtaining an MRI
of an animal, however, is that the subject must remain absolutely still. In a
veterinary setting, this means sedating the animal with medication. But
sedating an animal means that you can no longer study how the brain
functions.
Leonard had pioneered a new approach to studying monkeys’ brains.
Instead of sedating the monkeys, he had figured out how to scan their brains
while fully awake. This was a big deal for neuroscientists. When you
administer drugs that render the subject unconscious, you change brain
function in a major way. How this happens is not really understood. While
the unconscious state is interesting for its own sake, most neuroscientists
spend their time trying to figure out how the conscious brain works. Having
conscious subjects, animals or human is critical.
Working with monkeys is a dangerous business. Monkeys are mean.
Not if-you-don’t-give-me-food-I’ll-ignore-you mean. More like if you don’t give
me-food-I-will-rip-it-from-your-hand-and-eat-your-finger-and-chew off-
your-face-for-dessert mean. This presents certain logistical problems for
scanning their brains, especially if they are to remain fully awake.
What’s more, because they are closely related to humans, diseases can
pass between the species with ease. For instance, HIV, the virus that causes
AIDS is believed to have originated in African chimpanzees. Monkeys
harbor a strain of the herpes virus that is fatal to humans, which can be
passed along if, for example, one spits on you, which monkeys often do. The
monkeys also have to be protected from us. If humans can catch diseases
from monkeys, the opposite is also true. Monkeys are particularly susceptible
to tuberculosis. For all of these reasons, scientists must take extraordinary
safety precautions to work around monkeys.
Andrew and I made special arrangements to see how Leonard and his
team scanned the brains of fully awake monkeys. After registering at the
security desk, we were escorted through a series of keyed doors and
deposited in a changing room.
“You need to gown up,” Leonard’s assistant instructed. “From this
point forward, everyone must be fully protected. This means gown, face
mask, and eye shield.”
The so-called eye shields covered our faces entirely and were
claustrophobic. They also had a tendency to fog up. The face masks were the
surgical type. The combination of shield and mask made a speech about as
effective as talking into a pillow.
Our first stop was the training lab. Three oven-sized stainless steel
boxes lined one wall. They resembled small refrigerators, but the hasp-type
handle suggested something akin to a pottery kiln.
“These are the training boxes,” the assistant said. Opening one revealed
a sterile interior with white enameled walls and a cubby for devices allowing
tubes and wires to snake out to various pieces of monitoring equipment.
On the other side of the room sat an upright tube constructed from PVC
plumbing material. A foot in diameter and three feet tall, the top end was
capped with clear Plexiglas. A four-inch slot was cut in the center of the cap,
and a plastic shelf sat below the slot.
The assistant explained, “This is the restraint device. The monkey has a
collar around its neck that fits into the slot. With its head poking through, it
rests its chin on the shelf.”
Andrew pointed to a pair of hoses that were attached to the bottom of
the device. “What are these for?”
“Waste drainage.”
Pushing the resulting image out of my mind, I asked, “How do you get
the monkeys to go in there?”
The assistant pointed to a metal rod on the wall. “That affixes to their
collar, and then we can steer them into the device from a safe distance.”
So far, none of this was looking appropriate for the Dog Project. I kept
silent, though, still eager to learn anything that might be useful for us. The
device kept the monkey from escaping, but it wasn’t clear what would keep
its head still.
The assistant pulled a pink block of foam from a shelf.
“This is how we immobilize the head,” he explained. “First, we make a
mold of the monkey’s head, which is then used to make a positive cast with
plaster. From that, we use a gel-type material to make a soft cast, which fits
snugly around its head. We cut holes for the eyes, nose, and mouth. This gets
clamped to the restraint device.”
“And the monkeys cooperate with this?” I asked.
“They learn,” he replied. “We shape their behavior through rewards. It
takes about six months to train a monkey to go into the restraint device.”
“What are the boxes for?” Andrew asked.
“Those are conditioning boxes. Once the monkeys are trained to go into
the restraint device, the whole rig is placed in the box. We then train them
with lights and sounds.”
“Trained for what?” I asked.
“To get addicted to drugs.”
Right. Leonard’s research group was studying the biology of drug
addiction. To understand addiction, you need to look at the whole process,
from the first time somebody uses a drug to the point he becomes addicted.
Because it is unethical, obviously, to get people addicted to drugs, Leonard
uses monkeys as a stand-in.
The assistant continued. “Once they are trained to associate cues with
drugs, we take the whole rig to the MRI scanner so we can see what is going
on in their brains while they are craving drugs. Are you ready to go down to
the scanner?”
I couldn’t wait to get out of there.
Because the MRI’s strong magnetic field affects computer equipment, the
control room is partitioned from the main scanner room. When we entered, a
young woman draped in a surgical gown was staring intently at a computer
screen with several brain images.
She was not pleased to have visitors.
“Who are you?” she snapped at me. “Have you had a TB test?”
I honestly couldn’t remember when I had last been tested for
tuberculosis. Fortunately, Andrew distracted her.
“I have!” he announced cheerfully.
Leonard’s assistant explained that we were there to observe MRI scans
of monkeys. The monkeys being scanned that particular day was from a
different research lab. Because they had not gone through Leonard’s
behavioral training, these monkeys had received a heavy dose of sedation.
One monkey, surrounded by three veterinary technicians, was in the scanner
when we entered, attached to monitors that reported vital signs like heart rate,
breathing, and body temperature. Another monkey was on a cart, recovering
from anesthesia. I almost walked right by it, until it started twitching with
muscle spasms as the sedation wore off.
We took the opportunity to explain what we were trying to do with the
Dog Project. The vet techs were not enthusiastic.
“You’re going to have to monitor them,” one said. “Vital signs and core
body temperature.”
“How do you do that?” Andrew asked.
“Rectal probe.”
“Why would we do that to a dog that isn’t even sedated?” I asked.
“It’s standard operating policy to fully monitor all animals undergoing a
procedure,” she replied.
“But we’re not doing a procedure,” I protested. “The dogs will be
trained to go into the scanner willingly.”
She wasn’t buying it. “Who is going to be with the dogs?”
“Us, the dog trainer, and the owner.”
She shook her head. “I suppose you two are okay because you’re
university employees, but no outside visitors.”
Although it was clear there was no convincing this woman, I pressed
on. “Look, would you volunteer your dog to be in an experiment without
being present?”
“I suppose not. Even so, you’ll have to convince the review
committees.”
Andrew and I had seen enough. It surprised me that one of the nation’s
premier animal research facilities wasn’t more encouraging about the Dog
Project. But we were more determined than ever to find the right home for it.
When I got home that night, Callie and Lyra greeted me with unusual
attention. Instead of jumping up and down as they usually did, they sniffed
my feet intently. As I walked through the house they trailed me from a
respectable distance, focused on my feet.
They knew. I had tracked the monkey stink home with me.
Logistical problems aside, I realized there was no way we could do the
scanning at Yerkes with all those monkeys.

Continue Reading

Dogs

What It’s Like to Be a Dog

As with most scientific developments, it started as a series of random
thoughts and inferences that eventually led to an aha moment. While
Newton’s death planted the seed of an idea, it was my own discomfort around
groups of people that helped it grow.
For the past fifteen years, my lab has used brain-scanning technology to
understand how the human reward system works. The main tool that we use
is magnetic resonance imaging or MRI. About the size of a car, an MRI
scanner is pretty much a large tube wrapped in miles of wire. When
electricity is sent through the wire, it creates a powerful magnetic field that
can be used to see inside of a person’s brain. A standard MRI, like what you
would get if you went to a hospital, takes a picture of your brain. Scientists
soon discovered that if you took several pictures of the brain in rapid-fire, you
could see the brain in action. This is called functional MRI, or fMRI, and it
opened the black box of the human mind. With fMRI, we can measure
activity inside the brain while a person is actually doing something, like
reading or doing math or even while experiencing different types of
emotions. This allows scientists to figure out how the brain actually works
(hence the functional in fMRI).
As the leader of a research lab, it is one of my duties to hold an annual
lab party. You would think that this would be an enjoyable activity.
Inevitably it is a source of stress in our household. The dogs don’t help either.
Like me, the dogs were never properly socialized to large groups of
people, something for which I take full blame. Since we don’t have parties
often, it seemed unreasonable to make the dogs learn how to behave in such
situations. Nevertheless, one cannot completely abdicate these social
necessities, as with our once-a-year gathering of lab members.
Ignoring my antipathy, Kat and the girls threw themselves into the
preparations for the annual party. They brought all the chairs out of the
dining room and created a semicircular seating arrangement in the family
room. Nothing unusual about this, presuming that the guests are able adults
who can manage conversation while eating and drinking without tables to
place their food upon. It does not, however, account for dogs either
underfoot, in the case of Callie, or swishing big, fluffy tails around, in the
case of Lyra.
If everyone was a dog person, these parties wouldn’t present a problem.
In recent years, I have certainly become more selective in allowing people to
work in the lab, and this includes my asking whether he or she is a dog
person or, second best, a cat person. But can you really trust someone who
doesn’t have a pet? Despite my best efforts to fill the lab with animal lovers, I
have no control over spouses and partners.
Kat wanted to lock Lyra and Callie in the bedroom when the guests
arrived. The dogs weren’t accustomed to being locked up, so I feigned
ignorance and let them have free run of the party. As guests arrived, Callie
would give a perfunctory woof. Lyra just grinned and wagged her tail
excessively as the people filed in.
I could trust the dog people in the lab to keep an eye on the dogs and
prevent them from swiping food, so I slipped out to help Kat in the kitchen.
She was dishing up the hors d’oeuvres and pouring drinks. The team, while
diverse in terms of background, was predominantly American, with the
exception of one lab member from India. It was at the moment I stepped into
the kitchen when he arrived with his wife.
Their entrance was marked in dramatic fashion by an ear-piercing
“Eeeeeee! Eeeeeee! Eeeeeee!”
I rushed out of the kitchen. My colleague’s wife, wrapped in a lovely
sari had backed herself into a corner, shrieking like a bird at the mere sight
of the dogs.
This behavior baffled Callie, so she paid no further notice to her and
moved on to look for food droppings. Lyra, on the other hand, found these
vocalizations highly stimulating. She tracked right to the sound and starting
jumping up and down and barking in what appeared to me to be a request to
play. But the grimace of terror on the woman’s face indicated no such desire.
I grabbed Lyra by the collar and led her to the bedroom.
“Sorry, girl. You can’t play tonight.”
What did Lyra think was the reason that woman was screaming? If Lyra
were a person, I could have simply asked her. How else could I find out what
was going through her mind?
To truly know what a dog is thinking, you would have to be a dog.
The question of what a dog is thinking is actually an old metaphysical
debate, which has its origins in Descartes’s famous saying cogito ergo sum
—“I think, therefore I am.” Our entire human experience exists solely inside
our heads. Photons may strike our retinas, but it is only through the activity
of our brains that we have the subjective experience of seeing a rainbow or
the sublime beauty of a sunset over the ocean. Does a dog see those things?
Of course. Do they experience them the same way? Absolutely not.
When Lyra was jumping and barking at the woman wrapped in purple,
with a red dot on her forehead, Lyra experienced the same things at a
primitive level that I did. Purple. Red. Screaming. Those are the sensory
primitives. They originate in photons bouncing off dyes, pressure waves in
the air around the woman’s vocal cords. But my brain interprets those events
one way and Lyra’s brain another.
Observing Lyra’s behavior doesn’t tell us what she was thinking. From
past experience, I knew that Lyra barked and jumped in response to different
things. She barks when we’re eating. In that context, a natural assumption
would be that she wants food too. But she also barks after dropping a tennis
ball at my feet. I had no comparable frame of reference for what had attracted
her to the screaming woman that night at the party.
The question of what it is like to be a dog could be approached from
two very different perspectives. The hard approach asks the question: What is
it like for a dog to be a dog? If we could do that, then all the questions about
why a dog behaves the way it does would become clear. The problem with
being a dog, though, is that we would have no language to describe what we
felt. The best we can do is ask the related, but substantially easier question:
What would it be like for us to be a dog?
By imagining ourselves in the skin of another animal, we can recast
questions of behavior into their human equivalent. The question of why Lyra
harassed the party guest becomes: If I were Lyra, why would I bark at that
woman? Framed that way, we can form all sorts of speculations for dog
behavior.
Many authors have written about the dog mind, and some have even
attempted to answer the types of questions I have posed. I will not review this
vast literature. I will, however, point out that much of it is based on two
potentially flawed assumptions—both stemming from the paradox of getting
into a dog’s mind without actually being a dog.
The first flaw comes from the human tendency to anthropomorphize or
project our own thoughts and feelings onto things that aren’t ourselves. We
can’t help it. Our brains are hardwired to project our thoughts onto other
people. This is called mentalizing, and it is critical for human social
interactions. People are able to interact with each other only because they are
constantly guessing what other people are thinking. The brevity of text
messages, for example, and the fact that we are able to communicate with
less than 140 characters at a time work because people maintain mental
models of each other. The actual linguistic content of most text exchanges is
minimal. And because humans have common elements of culture, we tend to
react in fairly similar ways. For example, if I watch a movie that makes me
sad, I can use my own reaction to intuit that the people sitting around me are
feeling the same way. I could even start a conversation with a complete
stranger based on our shared experience, using my own thoughts as a starting
point. But dogs are not the same as humans, and they certainly don’t have a
shared culture as we do. There is no avoiding the fact that when we observe
dog behavior, we view it through the filter of the human mind. Unfortunately,
much of dog literature says more about the human writer than the dog.
The second flaw is the reliance on wolf behavior to interpret dog
behavior, termed automorphism. While it is true that dogs and wolves share a
common ancestor, that does not mean that dogs are descended from wolves.
This is an important distinction. The evolutionary trajectories of wolves and
dogs diverged when some of the “wolf-dogs” started hanging out with protohumans.
Those that stuck around became dogs, and those that stayed away
became modern wolves. Modern wolves behave differently from dogs, and
they have very different social structures. Their brains are different too.
Interpreting dog behavior through the lens of wolf behavior is even worse
than anthropomorphizing: it’s a human anthropomorphizing wolf behavior
and using that flawed impression as an analogy for dog behavior.
Wolf analogies have led to many flawed training strategies based on the
idea that the human must be the “pack leader,” an approach most commonly
associated with Cesar Millan. Unfortunately, there is no scientific basis for
using the wolf’s social structure as a model for the dog-human relationship.
Dogs can’t talk, and we can’t transport ourselves into a dog’s mind to know
what its subjective experience is. Where I see a happy golden retriever
playfully jumping up and down, someone else might see a hungry dog
planning to eat her for dinner. So what can we do to better know a dog’s
mind?
Although I hadn’t yet made the connection at the party, I would soon
realize that the solution had been right in front of me all along: brain imaging.
Because all mammalian brains have substantially similar parts, a map of
canine brain activation could be referenced to its human equivalent. For
instance, if we saw activation in the reward center of the dog brain, that could
be interpreted through human experiments that result in similar activity. With
human experiments, we have a reasonably good idea of what happened to
create a particular pattern of brain activation. We know, for example, that
activity in the visual part of the brain can be caused either by photons hitting
the retina or by the person mentally imagining a scene with his eyes closed.
Similarly, if we observed activity in the visual part of a dog’s brain, and the
dog wasn’t looking at anything, we could reasonably assume that it was
forming a mental image of something. Dogs might have imaginations too!
The mapping between the brains of different species is called a functional
homology. It means that a subjective experience like imagination can map
onto both a human brain and a dog brain. The patterns of activity in the two
brains would illustrate how to transform one type of brain into the other.
Philosophers dismiss the question of what it is like to be a dog as
unanswerable, but functional homologies between dog and human brains
could provide the missing link. Although brain imaging wouldn’t tell us what
it is like for a dog to be a dog, it could provide a road map—a brain map—of
what it would be like for a human to be a dog, without the bias of the human
interpreter. If it worked, brain imaging could end up being a canine neural
translator. We could go way beyond the question of why Lyra was being
obnoxious at the party. If we could map our thoughts and feelings onto the
dog brain, we could get right to the heart of the dog-human relationship: Do
dogs love us?
It all comes down to reciprocity. If the dog-human relationship is
predominantly one-sided, with humans projecting their thoughts onto the dog
vacuously staring up at his master in the hopes of receiving a doggie treat,
then the dog is not much better than a big teddy bear—a warm, soft,
comforting object.
But what if the dog reciprocates in the relationship? Do dogs have some
concept of humans as something more than food dispensers? Simply knowing
that human feelings toward dogs are reciprocated in some way, even if only
partially, changes everything. It would mean that dog-human relationships
belong on the same plane as human-human relationships.
None of these questions can be answered simply by observing dogs’
behavior. They go to the heart of dogs’ subjective experience of the world
and, in particular, their subjective experience of us.
My colleague and his wife didn’t stay long. Even with the dogs locked away
we could hear Lyra barking in the bedroom above the din of the party.
Nobody was surprised when they were the first to say good-bye.
Once they left, I let the dogs out. Lyra ran to the remaining guests and,
in her state of excitement, puked up something foamy and green. The partiers
watched in disgust as Callie darted over to slurp it up.
From the chorus of “Oooh, gross!” it was clear even the animal lovers
were aghast at our dogs’ behavior. An exodus ensued.
And that is why we no longer hold lab parties at our house.

Continue Reading