Connect with us

Dogs

My Dog Fights Me Every Time I Try to Clip His Nails !!

Mark and Jenni have given up on trying to cut Max’s nails. As soon as Max
sees the nail clippers, he runs and hides under the bed. If Mark tries to pull
him out, Max tries to bite. Jenni can sometimes trick Max into coming out
from under the bed by getting his leash and pretending to take him for a walk.
Once they have Max restrained, Mark has to sit on him and hold his mouth
shut while Jenni tries to clip his nails. All the while Max is yelping, growling,
and trying to bite them or the nail clippers. Max has become so difficult that
even the groomer and the veterinarian do not want to try to trim his nails.
This is a common scenario in dog-owning households across the nation.
Like nail trimming, many grooming and body-care procedures—ear cleaning,
toothbrushing, pulling out burrs—can be painfully difficult for dogs and their
owners. Dogs’ resistance to handling and maintenance is not an attempt at
domination, any more than your toddler’s resistance to the dentist is.
Resistance to these procedures stems from fear, pain, and distrust of the
procedure or the person administering it.
Dogs respond to potential threats by either moving away (fleeing) or trying
to drive the threat away (fighting). These are natural, biologically hardwired
reactions to danger. If you poke a hornet’s nest, you understand that the
insects will swarm out in defense and try to sting you to drive you away.
Similarly, if your dog feels that you are a threat to his safety, he may react
aggressively. If your dog first tries to run away and you prevent this by
grabbing or holding him, he may turn and try to bite you so you will let go.
Why would the dog you love and who loves you distrust you or think you
are a danger to him? Many of the interactions we have with dogs are
misinterpreted: what we feel is friendly may be perceived as threatening by
the dog. (See chapter 1 on communication.) Additionally, maintenance
procedures are activities for which dogs are not naturally prepared. In a wild
setting, dogs and their ancestors are not subjected to ear medications, eye
cleanings, toothbrushing, and nail trims. A wild animal vehemently guards
his feet because legs are used to escape and to hunt; injuries to them often
lead to death. Similarly, the only reason a dog living in the wild would be
picked up off the ground would be by a predator. These are naturally scary
actions to dogs. When your dog rolls over onto his back or plays bows and
dodges away when you approach with the eye medication, he is trying to
politely tell you to stop, that he is worried.
Another reason the dog may mistrust you is if he has had a previous bad
experience with a procedure. Perhaps his ears are infected (or once were
infected) and putting medication in the ears is quite painful. The dog does not
necessarily understand that the medication will make him feel better in the
future. He just knows that the procedure hurts now—and he’s not going to let
you do it again!
To add insult to injury, we often get frustrated and angry with our dogs
when they behave in an uncooperative, or, especially, in an aggressive
manner. This generally leads us to yell at or even spank the dog in an attempt
to try to make the dog “submit” and cooperate. Our anger only makes the dog
more fearful and distrustful. Now he’s not only worried about the procedure
but also his typically sweet and loving owner is “going Mr. Hyde” on him—
and those nail trimmers (or ear medication or whatever) signal the
transformation. It’s another good reason to run when he sees the trimmers
come out!
So how do we deal with this problem? First, don’t take it personally. The
good news is that your dog is not trying to be dominant over you or take
control of your life. Grooming resistance doesn’t mean he is disrespectful.
The bad news is that it does mean your dog has not been adequately prepared
to feel safe and comfortable with you or someone else doing these
procedures. But more good news: you can change this! If a zookeeper can
train a rhinoceros to allow someone to poke him with a needle, certainly we
can train our dogs to do the same.
Training Dos and Don’ts
First, DON’T try to trick your dog! For example, sneaking up on the dog and
administering medication or trimming his nails while he is sleeping will
seriously harm your relationship with him. Try this often enough, and it may
also make your dog afraid to sleep in your presence. He may become
hypervigilant when sleeping and begin to defensively snap or bite if
approached or wakened. At times, distraction is an appropriate part of the
prevention and retraining process, but subterfuge is never acceptable.
DO find a temporary solution to the problem while you are working
through training exercises. For example, if your dog’s ears need to be
medicated, speak to your veterinarian about options for another form of
treatment, such as oral medication or a long-acting topical preparation that
the veterinarian may have to administer under sedation. If your dog’s nails
are in serious need of immediate trimming, speak to your veterinarian about
having the dog sedated and the nails cut short, to give you time to work with
your dog.
DO set up a systematic training plan to methodically work through the
issue. Seek the assistance of a qualified behaviorist or trainer, especially if
your dog is trying to bite.
DO plan to be patient and work through the problem at a pace that makes it
fun and nonconfrontational for both you and your dog. The success you have
with one maintenance procedure will help you address other handling issues
more easily. As your dog’s trust in you and his understanding of what will
occur increases, he will become easier to handle overall.
Changing Your Dog’s Opinion of the Procedure
For this to work, the training must be done in very small steps. The more
afraid or uncooperative your dog is, the more slowly you will need to work
through the process. If your dog has a severe reaction (screaming, yelling,
struggling, snapping, or biting), plan to spend several weeks or more working
through the problem. Your dog might not be aggressive, but if he is squirrelly
all over, it makes the task mighty difficult!
What you will need: time, patience, a comfortable place to work with your
dog, and, most important, some of your dog’s favorite things—treats, toys,
whatever he really loves. In a nutshell, you want to accomplish two things:
1. Pair the unsavory experience (such as toothbrushing) with something
your dog really loves (such as chicken pieces), so he looks forward to
the process.
2. Teach the dog to sit or lie still while you perform the procedure.
Start the training in a place and at a time when your dog is likely to already
be relatively calm and relaxed. For example, if your dog is very active,
training might best be done after his daily walk but before his dinner; this
way, he is a little tired but still hungry. Eliminate other distractions; put other
animals away in another room and send the kids off to play.
Using this process, you gradually teach the dog to sit quietly while you
approximate—in successive steps—the handling that a maintenance
procedure will require. After repeating each step, immediately reward calm
behavior with a very yummy treat (keep them small so that you can quickly
proceed to the next step). Remember not to go on to a more-challenging step
until your dog is very comfortable with the previous step. Here’s an example
of how you might break a task into small steps:
1. Handle the appropriate body parts—legs and feet for nail trimming,
head and ears for ear medication, head and mouth for toothbrushing,
and so on.
2. Gently rub his teeth with your finger or bring the nail trimmers within a
few inches of his feet.
3. Gently brush his teeth with your finger with toothpaste on it or touch his
feet and toes with the nail trimmers.
4. Gently brush his teeth with a gauze pad wrapped around your finger or
place the trimmers over a nail but without actually cutting the nail.
5. Brush his teeth with a gauze pad with toothpaste on it or gently cut one
toenail.
When the dog is able to reliably and calmly accept one step, move on to
the next. You can also apply this basic process to other procedures that you
would similarly like your dog to adapt to.
Each step may involve multiple training sessions. The duration of the
training sessions will be determined by your patience and how long your dog
can stay relaxed but interested. Generally, sessions will run as short as five
minutes or as long as thirty minutes. Predictability helps reduce anxiety, so
doing the training sessions in the same place, at least for the first several
sessions, can help. Most maintenance procedures will be easier to do if you
sit in a chair or on the floor by the dog, so remember to start your training
that way.
Your dog will catch on to the process faster if you use some type of marker
signal to tell him the moment when he’s done exactly what you want him to
do. This could be a particular word (such as yes, good, or sweet) or a
mechanical sound such as a clicker. Be generous also with calm and
enthusiastic praise when he is successful.
Remember that this training should be fun—for both of you! If, at any
time, your dog gets nervous, aggressive, or acts as if he does not want to
participate in the training session, stop. Next time, start fresh at an earlier
step. Back up and make it easier and more fun. Proceed more slowly through
the steps.
It is not uncommon for dogs to be easier to handle on one side than the
other. So, for example, you may need to work longer on trimming the left
paws than the right ones. The “bad” side might need extra work and extra
patience on your part. Remember, you are not on a time schedule. Take your
time. You might just work on one paw one day and the others on subsequent
days. If you are doing this correctly, the whole procedure should be rather
mundane for your dog.

Continue Reading

Dogs

Dog Basic Training

Would be able to adapt to novel tasks. But there was only one way to
find out for sure.
Helen, eager to see how Callie would do with the training, helped me
load her into the car, and the three of us headed to CPT with the head coil to
see Mark work his magic.
Helen entered with Callie, while I placed the head coil on the floor.
Mark looked at it and nodded. “This should be easy. Did you bring
treats?”
From puppy training, I knew that soft treats are best. You can cut them
up into tiny pieces so the dog doesn’t fill up too quickly. And the dog can
consume them easily without getting distracted by crunching on a hard
biscuit. The only treats I could find around the house were some hot dogs that
had been pushed to the back of the refrigerator. I had no idea how long they’d
been there, but they smelled okay, and Callie loved them. I handed Mark a
baggie full of sliced-up hot dogs.
“First,” he said, “let’s start with the clicker.”
A training clicker is a small device about the size of a USB flash drive
that, unsurprisingly, makes a loud click when pressed. Dogs can hear the
clicker from across the room. The advantage of using one is that it always
makes the same sound, which is not the case with vocal commands. Because
it’s almost impossible to screw up, the clicker is a useful tool for beginners
like me. Its operation is simple: when the dog does something correct, you
click. For this to work, however, you first have to teach the dog that a click
equals a reward. This is classic classical conditioning. Just like Pavlov.
Callie tracked the bag of hot dogs as I handed it to Mark. Then she
dutifully sat at his feet, tail sweeping the floor. Mark clicked and immediately
gave her a piece of hot dog. Callie got even more excited. She could barely
sit.
At this point, what Callie was doing was unimportant. Mark
periodically clicked and handed her a reward. He was establishing the
association of each click with a transfer of reward, making it a conditioned
stimulus. It didn’t take long. A dozen click-rewards, and Callie understood
the association. With the meaning of the clicker established, Callie was ready
to learn a behavior. I could immediately see how the clicker was going to
make this easier.
Mark explained another advantage of using the clicker. “We are going
to shape her behavior. Initially, anything Callie does that is close to the
desired behavior will be rewarded. The clicker makes it absolutely clear to
her that she has done something correctly. This way, she won’t get
conditioned to just my voice or your voice.”
The clicker gives instantaneous feedback, making it clear to a dog that
she has done something good without wasting time fumbling for the treats.
Unlike a human, a dog’s memory for what she has just done appears to be
very limited. The longer the interval between the desired behavior and the
subsequent reward, the less likely the dog will make the association. This
phenomenon is called temporal discounting. Research in rats suggests that a
reward given four seconds after a desired behavior is roughly half as effective
as one given immediately. If the handler is deeply involved with the dog,
using hand signals and vocal commands, he might not be able to give a
reward for a while. This is especially true of complex behaviors. The clicker
solves this problem by giving instantaneous feedback.
Mark was beginning to lure Callie into the head coil. Reaching into the
coil with a hot dog in one hand and the clicker in the other, Mark had already
succeeded in getting Callie to place her nose inside. Each time she did so,
Mark clicked, praised her, and gave her a bit of hot dog.
With every click-reward, Mark pulled the food back a little bit, shaping
her behavior gradually. Within ten repetitions, he had Callie crouching in the
coil with her snout poking out the other end. Some gentle pressure on her
rump indicated that she should lie down in the coil. As soon as she did, Mark
clicked and exclaimed, “Good coil!” Callie wagged her tail and licked the hot
dog from his hand.
I couldn’t believe how quickly Mark had gotten Callie where she
needed to be.
“How is the positioning?” he asked.
Callie was lying down in a sphinx position in the coil. Her paws hung
over the near edge. She would need to move back a little bit.
“We’ll want her head in the center.” Mark nudged her back an inch and
clicked.
“You can shape her behavior at home too,” he said. “I think she’ll do
really well with this.”
A woman walked into CPT with a border collie.
“This is Melissa Cate,” Mark said. “Melissa runs some of our agility
classes at CPT. She’s interested in volunteering her dog for the MRI.”
“Mark told me about the Dog Project.” Pointing to her dog, she said,
“This is McKenzie.”
McKenzie was Melissa’s three-year-old border collie. Melissa had
begun agility competitions a few years earlier with her boxer, Zeke, who had
reached the highest ranks. Zeke was now eight years old and slowing down a
bit, so Melissa had gotten McKenzie as a puppy to keep competing in agility.
They had been going strong ever since.
McKenzie was leggy and lean, about thirty-five pounds, with a long,
thin head that would easily fit in the head coil. She trotted over to me and
stared long and hard. She quickly realized that I was not a herdable animal
and moved on to check out Helen.
Callie zoomed over and assumed a play bow with her front legs flat and
her rump in the air, tail wagging like a vibrating string. We let the two dogs
off-leash and they ran around the room. Callie did orbits around McKenzie,
who seemed indifferent to the newbie dog.
It was time for McKenzie’s try with the head coil. With a dog treat,
Melissa had no trouble coaxing her into the coil. Nibbling the food out of
Melissa’s hand, McKenzie appeared unaware of the coil altogether. In agility
competition, the dogs run through a serpentine tunnel, and McKenzie was
completely comfortable in an enclosed space.
After a few minutes, Melissa commanded McKenzie to lie down.
“Platz,” she said, using the German word for “down.” Mark explained that
German words are commonly used in dog training because of the popular
Schutzhund competitions. These began as training programs and tests for
German shepherds but evolved into a full-fledged sport involving tracking,
obedience, and protection phases.
With McKenzie lying down in the head coil, Melissa backed away to
the other side of the room. McKenzie didn’t budge. In fact, she stayed
motionless for a solid minute. When I saw what a well-trained dog like
McKenzie could do, I knew we could really do this. If the dogs would go into
the head coil, they would go into the MRI.


Continue Reading

Dogs

The Scanner Dilemma

H I L E A N D R E W A N D I W E R E pretty sure we could figure out how to
scan a dog’s brain, we had neglected to consider a minor, though
important, detail: Where? The Dog Project needed a home.
The lab had been captivated with the “big question”—figuring out what
goes on in a dog’s brain. Details like the type of brain scanner, or where to
find it, were just that: details. Up until this point, I hadn’t been concerned.
The best part of being a scientist is when the ideas are coming so fast and
furious that you can’t even write them down. You don’t have time to worry
about details. They just get in the way.
But eventually, we had to confront the practical aspects of pulling this
off. And the first detail was finding an MRI facility that would let us bring
dogs into its scanner.
Yerkes National Primate Research Center, located about a mile from the main
Emory campus was our first choice for MRI scanning. Nestled in a valley
lined with southern pines, Yerkes seemed ideal. It was a short drive from the
lab, so we could easily move our equipment there. And because it was off the
main street, it was also quiet and peaceful. The last thing we wanted was to
scare a potential canine subject with a trip through a busy intersection. From
a dog’s perspective, I imagined Yerkes would look like a walk in the woods.
Yerkes also specialized in the study of animals—primarily monkeys.
Andrew and I congratulated each other on our good fortune. We had come up
with the idea of scanning the brain of a fully awake dog, and one of the
premier facilities for the study of animals turned out to be right in our
backyard. In fact, there are only eight such facilities in the United States.
Yerkes even had an MRI scanner dedicated specifically to the study of
animals. A friend and colleague of mine, Leonard Howell, was director of the
Yerkes Imaging Center and invited us to take a look at how they scan
monkeys’ brains.
Although the Yerkes MRI center is unusual in the sense that it was
purposely built for the study of how primate brains function, it is actually not
that unusual to have such a facility at a veterinary school or even at a high tech
veterinarian hospital. Any and all medical diagnostic tests performed on
humans are now also done on animals. The challenge with obtaining an MRI
of an animal, however, is that the subject must remain absolutely still. In a
veterinary setting, this means sedating the animal with medication. But
sedating an animal means that you can no longer study how the brain
functions.
Leonard had pioneered a new approach to studying monkeys’ brains.
Instead of sedating the monkeys, he had figured out how to scan their brains
while fully awake. This was a big deal for neuroscientists. When you
administer drugs that render the subject unconscious, you change brain
function in a major way. How this happens is not really understood. While
the unconscious state is interesting for its own sake, most neuroscientists
spend their time trying to figure out how the conscious brain works. Having
conscious subjects, animals or human is critical.
Working with monkeys is a dangerous business. Monkeys are mean.
Not if-you-don’t-give-me-food-I’ll-ignore-you mean. More like if you don’t give
me-food-I-will-rip-it-from-your-hand-and-eat-your-finger-and-chew off-
your-face-for-dessert mean. This presents certain logistical problems for
scanning their brains, especially if they are to remain fully awake.
What’s more, because they are closely related to humans, diseases can
pass between the species with ease. For instance, HIV, the virus that causes
AIDS is believed to have originated in African chimpanzees. Monkeys
harbor a strain of the herpes virus that is fatal to humans, which can be
passed along if, for example, one spits on you, which monkeys often do. The
monkeys also have to be protected from us. If humans can catch diseases
from monkeys, the opposite is also true. Monkeys are particularly susceptible
to tuberculosis. For all of these reasons, scientists must take extraordinary
safety precautions to work around monkeys.
Andrew and I made special arrangements to see how Leonard and his
team scanned the brains of fully awake monkeys. After registering at the
security desk, we were escorted through a series of keyed doors and
deposited in a changing room.
“You need to gown up,” Leonard’s assistant instructed. “From this
point forward, everyone must be fully protected. This means gown, face
mask, and eye shield.”
The so-called eye shields covered our faces entirely and were
claustrophobic. They also had a tendency to fog up. The face masks were the
surgical type. The combination of shield and mask made a speech about as
effective as talking into a pillow.
Our first stop was the training lab. Three oven-sized stainless steel
boxes lined one wall. They resembled small refrigerators, but the hasp-type
handle suggested something akin to a pottery kiln.
“These are the training boxes,” the assistant said. Opening one revealed
a sterile interior with white enameled walls and a cubby for devices allowing
tubes and wires to snake out to various pieces of monitoring equipment.
On the other side of the room sat an upright tube constructed from PVC
plumbing material. A foot in diameter and three feet tall, the top end was
capped with clear Plexiglas. A four-inch slot was cut in the center of the cap,
and a plastic shelf sat below the slot.
The assistant explained, “This is the restraint device. The monkey has a
collar around its neck that fits into the slot. With its head poking through, it
rests its chin on the shelf.”
Andrew pointed to a pair of hoses that were attached to the bottom of
the device. “What are these for?”
“Waste drainage.”
Pushing the resulting image out of my mind, I asked, “How do you get
the monkeys to go in there?”
The assistant pointed to a metal rod on the wall. “That affixes to their
collar, and then we can steer them into the device from a safe distance.”
So far, none of this was looking appropriate for the Dog Project. I kept
silent, though, still eager to learn anything that might be useful for us. The
device kept the monkey from escaping, but it wasn’t clear what would keep
its head still.
The assistant pulled a pink block of foam from a shelf.
“This is how we immobilize the head,” he explained. “First, we make a
mold of the monkey’s head, which is then used to make a positive cast with
plaster. From that, we use a gel-type material to make a soft cast, which fits
snugly around its head. We cut holes for the eyes, nose, and mouth. This gets
clamped to the restraint device.”
“And the monkeys cooperate with this?” I asked.
“They learn,” he replied. “We shape their behavior through rewards. It
takes about six months to train a monkey to go into the restraint device.”
“What are the boxes for?” Andrew asked.
“Those are conditioning boxes. Once the monkeys are trained to go into
the restraint device, the whole rig is placed in the box. We then train them
with lights and sounds.”
“Trained for what?” I asked.
“To get addicted to drugs.”
Right. Leonard’s research group was studying the biology of drug
addiction. To understand addiction, you need to look at the whole process,
from the first time somebody uses a drug to the point he becomes addicted.
Because it is unethical, obviously, to get people addicted to drugs, Leonard
uses monkeys as a stand-in.
The assistant continued. “Once they are trained to associate cues with
drugs, we take the whole rig to the MRI scanner so we can see what is going
on in their brains while they are craving drugs. Are you ready to go down to
the scanner?”
I couldn’t wait to get out of there.
Because the MRI’s strong magnetic field affects computer equipment, the
control room is partitioned from the main scanner room. When we entered, a
young woman draped in a surgical gown was staring intently at a computer
screen with several brain images.
She was not pleased to have visitors.
“Who are you?” she snapped at me. “Have you had a TB test?”
I honestly couldn’t remember when I had last been tested for
tuberculosis. Fortunately, Andrew distracted her.
“I have!” he announced cheerfully.
Leonard’s assistant explained that we were there to observe MRI scans
of monkeys. The monkeys being scanned that particular day was from a
different research lab. Because they had not gone through Leonard’s
behavioral training, these monkeys had received a heavy dose of sedation.
One monkey, surrounded by three veterinary technicians, was in the scanner
when we entered, attached to monitors that reported vital signs like heart rate,
breathing, and body temperature. Another monkey was on a cart, recovering
from anesthesia. I almost walked right by it, until it started twitching with
muscle spasms as the sedation wore off.
We took the opportunity to explain what we were trying to do with the
Dog Project. The vet techs were not enthusiastic.
“You’re going to have to monitor them,” one said. “Vital signs and core
body temperature.”
“How do you do that?” Andrew asked.
“Rectal probe.”
“Why would we do that to a dog that isn’t even sedated?” I asked.
“It’s standard operating policy to fully monitor all animals undergoing a
procedure,” she replied.
“But we’re not doing a procedure,” I protested. “The dogs will be
trained to go into the scanner willingly.”
She wasn’t buying it. “Who is going to be with the dogs?”
“Us, the dog trainer, and the owner.”
She shook her head. “I suppose you two are okay because you’re
university employees, but no outside visitors.”
Although it was clear there was no convincing this woman, I pressed
on. “Look, would you volunteer your dog to be in an experiment without
being present?”
“I suppose not. Even so, you’ll have to convince the review
committees.”
Andrew and I had seen enough. It surprised me that one of the nation’s
premier animal research facilities wasn’t more encouraging about the Dog
Project. But we were more determined than ever to find the right home for it.
When I got home that night, Callie and Lyra greeted me with unusual
attention. Instead of jumping up and down as they usually did, they sniffed
my feet intently. As I walked through the house they trailed me from a
respectable distance, focused on my feet.
They knew. I had tracked the monkey stink home with me.
Logistical problems aside, I realized there was no way we could do the
scanning at Yerkes with all those monkeys.

Continue Reading

Dogs

What It’s Like to Be a Dog

As with most scientific developments, it started as a series of random
thoughts and inferences that eventually led to an aha moment. While
Newton’s death planted the seed of an idea, it was my own discomfort around
groups of people that helped it grow.
For the past fifteen years, my lab has used brain-scanning technology to
understand how the human reward system works. The main tool that we use
is magnetic resonance imaging or MRI. About the size of a car, an MRI
scanner is pretty much a large tube wrapped in miles of wire. When
electricity is sent through the wire, it creates a powerful magnetic field that
can be used to see inside of a person’s brain. A standard MRI, like what you
would get if you went to a hospital, takes a picture of your brain. Scientists
soon discovered that if you took several pictures of the brain in rapid-fire, you
could see the brain in action. This is called functional MRI, or fMRI, and it
opened the black box of the human mind. With fMRI, we can measure
activity inside the brain while a person is actually doing something, like
reading or doing math or even while experiencing different types of
emotions. This allows scientists to figure out how the brain actually works
(hence the functional in fMRI).
As the leader of a research lab, it is one of my duties to hold an annual
lab party. You would think that this would be an enjoyable activity.
Inevitably it is a source of stress in our household. The dogs don’t help either.
Like me, the dogs were never properly socialized to large groups of
people, something for which I take full blame. Since we don’t have parties
often, it seemed unreasonable to make the dogs learn how to behave in such
situations. Nevertheless, one cannot completely abdicate these social
necessities, as with our once-a-year gathering of lab members.
Ignoring my antipathy, Kat and the girls threw themselves into the
preparations for the annual party. They brought all the chairs out of the
dining room and created a semicircular seating arrangement in the family
room. Nothing unusual about this, presuming that the guests are able adults
who can manage conversation while eating and drinking without tables to
place their food upon. It does not, however, account for dogs either
underfoot, in the case of Callie, or swishing big, fluffy tails around, in the
case of Lyra.
If everyone was a dog person, these parties wouldn’t present a problem.
In recent years, I have certainly become more selective in allowing people to
work in the lab, and this includes my asking whether he or she is a dog
person or, second best, a cat person. But can you really trust someone who
doesn’t have a pet? Despite my best efforts to fill the lab with animal lovers, I
have no control over spouses and partners.
Kat wanted to lock Lyra and Callie in the bedroom when the guests
arrived. The dogs weren’t accustomed to being locked up, so I feigned
ignorance and let them have free run of the party. As guests arrived, Callie
would give a perfunctory woof. Lyra just grinned and wagged her tail
excessively as the people filed in.
I could trust the dog people in the lab to keep an eye on the dogs and
prevent them from swiping food, so I slipped out to help Kat in the kitchen.
She was dishing up the hors d’oeuvres and pouring drinks. The team, while
diverse in terms of background, was predominantly American, with the
exception of one lab member from India. It was at the moment I stepped into
the kitchen when he arrived with his wife.
Their entrance was marked in dramatic fashion by an ear-piercing
“Eeeeeee! Eeeeeee! Eeeeeee!”
I rushed out of the kitchen. My colleague’s wife, wrapped in a lovely
sari had backed herself into a corner, shrieking like a bird at the mere sight
of the dogs.
This behavior baffled Callie, so she paid no further notice to her and
moved on to look for food droppings. Lyra, on the other hand, found these
vocalizations highly stimulating. She tracked right to the sound and starting
jumping up and down and barking in what appeared to me to be a request to
play. But the grimace of terror on the woman’s face indicated no such desire.
I grabbed Lyra by the collar and led her to the bedroom.
“Sorry, girl. You can’t play tonight.”
What did Lyra think was the reason that woman was screaming? If Lyra
were a person, I could have simply asked her. How else could I find out what
was going through her mind?
To truly know what a dog is thinking, you would have to be a dog.
The question of what a dog is thinking is actually an old metaphysical
debate, which has its origins in Descartes’s famous saying cogito ergo sum
—“I think, therefore I am.” Our entire human experience exists solely inside
our heads. Photons may strike our retinas, but it is only through the activity
of our brains that we have the subjective experience of seeing a rainbow or
the sublime beauty of a sunset over the ocean. Does a dog see those things?
Of course. Do they experience them the same way? Absolutely not.
When Lyra was jumping and barking at the woman wrapped in purple,
with a red dot on her forehead, Lyra experienced the same things at a
primitive level that I did. Purple. Red. Screaming. Those are the sensory
primitives. They originate in photons bouncing off dyes, pressure waves in
the air around the woman’s vocal cords. But my brain interprets those events
one way and Lyra’s brain another.
Observing Lyra’s behavior doesn’t tell us what she was thinking. From
past experience, I knew that Lyra barked and jumped in response to different
things. She barks when we’re eating. In that context, a natural assumption
would be that she wants food too. But she also barks after dropping a tennis
ball at my feet. I had no comparable frame of reference for what had attracted
her to the screaming woman that night at the party.
The question of what it is like to be a dog could be approached from
two very different perspectives. The hard approach asks the question: What is
it like for a dog to be a dog? If we could do that, then all the questions about
why a dog behaves the way it does would become clear. The problem with
being a dog, though, is that we would have no language to describe what we
felt. The best we can do is ask the related, but substantially easier question:
What would it be like for us to be a dog?
By imagining ourselves in the skin of another animal, we can recast
questions of behavior into their human equivalent. The question of why Lyra
harassed the party guest becomes: If I were Lyra, why would I bark at that
woman? Framed that way, we can form all sorts of speculations for dog
behavior.
Many authors have written about the dog mind, and some have even
attempted to answer the types of questions I have posed. I will not review this
vast literature. I will, however, point out that much of it is based on two
potentially flawed assumptions—both stemming from the paradox of getting
into a dog’s mind without actually being a dog.
The first flaw comes from the human tendency to anthropomorphize or
project our own thoughts and feelings onto things that aren’t ourselves. We
can’t help it. Our brains are hardwired to project our thoughts onto other
people. This is called mentalizing, and it is critical for human social
interactions. People are able to interact with each other only because they are
constantly guessing what other people are thinking. The brevity of text
messages, for example, and the fact that we are able to communicate with
less than 140 characters at a time work because people maintain mental
models of each other. The actual linguistic content of most text exchanges is
minimal. And because humans have common elements of culture, we tend to
react in fairly similar ways. For example, if I watch a movie that makes me
sad, I can use my own reaction to intuit that the people sitting around me are
feeling the same way. I could even start a conversation with a complete
stranger based on our shared experience, using my own thoughts as a starting
point. But dogs are not the same as humans, and they certainly don’t have a
shared culture as we do. There is no avoiding the fact that when we observe
dog behavior, we view it through the filter of the human mind. Unfortunately,
much of dog literature says more about the human writer than the dog.
The second flaw is the reliance on wolf behavior to interpret dog
behavior, termed automorphism. While it is true that dogs and wolves share a
common ancestor, that does not mean that dogs are descended from wolves.
This is an important distinction. The evolutionary trajectories of wolves and
dogs diverged when some of the “wolf-dogs” started hanging out with protohumans.
Those that stuck around became dogs, and those that stayed away
became modern wolves. Modern wolves behave differently from dogs, and
they have very different social structures. Their brains are different too.
Interpreting dog behavior through the lens of wolf behavior is even worse
than anthropomorphizing: it’s a human anthropomorphizing wolf behavior
and using that flawed impression as an analogy for dog behavior.
Wolf analogies have led to many flawed training strategies based on the
idea that the human must be the “pack leader,” an approach most commonly
associated with Cesar Millan. Unfortunately, there is no scientific basis for
using the wolf’s social structure as a model for the dog-human relationship.
Dogs can’t talk, and we can’t transport ourselves into a dog’s mind to know
what its subjective experience is. Where I see a happy golden retriever
playfully jumping up and down, someone else might see a hungry dog
planning to eat her for dinner. So what can we do to better know a dog’s
mind?
Although I hadn’t yet made the connection at the party, I would soon
realize that the solution had been right in front of me all along: brain imaging.
Because all mammalian brains have substantially similar parts, a map of
canine brain activation could be referenced to its human equivalent. For
instance, if we saw activation in the reward center of the dog brain, that could
be interpreted through human experiments that result in similar activity. With
human experiments, we have a reasonably good idea of what happened to
create a particular pattern of brain activation. We know, for example, that
activity in the visual part of the brain can be caused either by photons hitting
the retina or by the person mentally imagining a scene with his eyes closed.
Similarly, if we observed activity in the visual part of a dog’s brain, and the
dog wasn’t looking at anything, we could reasonably assume that it was
forming a mental image of something. Dogs might have imaginations too!
The mapping between the brains of different species is called a functional
homology. It means that a subjective experience like imagination can map
onto both a human brain and a dog brain. The patterns of activity in the two
brains would illustrate how to transform one type of brain into the other.
Philosophers dismiss the question of what it is like to be a dog as
unanswerable, but functional homologies between dog and human brains
could provide the missing link. Although brain imaging wouldn’t tell us what
it is like for a dog to be a dog, it could provide a road map—a brain map—of
what it would be like for a human to be a dog, without the bias of the human
interpreter. If it worked, brain imaging could end up being a canine neural
translator. We could go way beyond the question of why Lyra was being
obnoxious at the party. If we could map our thoughts and feelings onto the
dog brain, we could get right to the heart of the dog-human relationship: Do
dogs love us?
It all comes down to reciprocity. If the dog-human relationship is
predominantly one-sided, with humans projecting their thoughts onto the dog
vacuously staring up at his master in the hopes of receiving a doggie treat,
then the dog is not much better than a big teddy bear—a warm, soft,
comforting object.
But what if the dog reciprocates in the relationship? Do dogs have some
concept of humans as something more than food dispensers? Simply knowing
that human feelings toward dogs are reciprocated in some way, even if only
partially, changes everything. It would mean that dog-human relationships
belong on the same plane as human-human relationships.
None of these questions can be answered simply by observing dogs’
behavior. They go to the heart of dogs’ subjective experience of the world
and, in particular, their subjective experience of us.
My colleague and his wife didn’t stay long. Even with the dogs locked away
we could hear Lyra barking in the bedroom above the din of the party.
Nobody was surprised when they were the first to say good-bye.
Once they left, I let the dogs out. Lyra ran to the remaining guests and,
in her state of excitement, puked up something foamy and green. The partiers
watched in disgust as Callie darted over to slurp it up.
From the chorus of “Oooh, gross!” it was clear even the animal lovers
were aghast at our dogs’ behavior. An exodus ensued.
And that is why we no longer hold lab parties at our house.

Continue Reading