Connect with us

Dogs

I Know It’s Going to Rain, Dogs Who Are Phobic About Sound !!

Darni was an adorable little Shih Tzu who loved just about everything except
loud noises, especially thunder. Her fear was so intense that she would shake,
tremble, pace, whine, vomit, and have diarrhea whenever the weather was
stormy. Dani’s family was distraught and had tried many traditional training
techniques to help her. Unfortunately, Darni was getting worse with each
storm season. Her owners loved her very much and did not want to see her
suffer anymore. Fortunately, they were referred to a veterinary behaviorist
for help.
Darni was four years old and had been suffering from noise sensitivities
for two years. After the behavior consultation, it became apparent that Darni
had a phobia of storms. However, her high level of fear and anxiety made it
impossible for her to respond to behavior modification exercises without the
help of antianxiety medications. With the use of appropriate medications,
Dani’s family was able to implement behavior modification
recommendations and her fear of storms was greatly reduced.
Now, although Darni still does not love storm season, she is able to lie
down, calmly walk around, and appear just a little worried as opposed to
being panicked. For Dani and her family, this is a huge improvement in
everyone’s quality of life. Dani’s family, who once thought there was no
hope for their dog, are now firm believers in never giving up.
Fireworks, thunder, and gunshots, oh my! These are some of the most
common noises that incite fearful responses in dogs. Anyone who has a dog
who is afraid of noises knows just how difficult this can be for both the dog
and the family. Why are so many dogs scared of noises? One study found that
33 percent of dogs who show noise-related fears were also reported to have
experienced a traumatic event associated with noises. But what about the
other 67 percent?
There are many theories as to why some dogs are afraid of noises while
others are not. A study led by veterinary behaviorist Daniel Mills at Lincoln
University in the United Kingdom looked into the causes of noise
sensitivities. The study discovered that, in addition to their having had
traumatic experiences, dogs with chronic stress and dogs who were not
exposed to noises in early life in a responsible, nonscary way are more likely
to be sound sensitive. Dogs who do not respond well to stress may have a
genetic predisposition to being afraid of noises.
Unfortunately, the research into this particular area is in its infancy. Until
we learn more about why and how these fears develop, it is most important to
know that there are currently treatments out there that can be very effective.
So don’t give up.
Is reacting to noise really abnormal? After all, who hasn’t jumped or startled
at a large crack of thunder or when someone drops a tray of plates in a
restaurant?
In fact, reacting to noises is very normal. Evolutionarily speaking, it is a
mechanism for increasing survival. If you hear a sound that might represent
danger and you flee from that sound, you survive. In fact, sound travels so
fast in the brain that it will often bypass the thinking parts and go straight to
the part that makes an individual flee. So if this can be a normal response,
what constitutes an abnormal reaction to noise?
For a noise response to be healthy, it is important that any reaction to noise is short-lived and that recovery from the noise is quick. One should not
exhibit a sustained response to the noise, even if the noise is sustained. Most
of us have the ability to get used to certain noises that our brains learn to
ignore because they do not represent danger. This process is called
habituation. The ability to habituate requires the normal functioning of many
parts of the brain because habituation is a learning process.
A healthy response for a dog would be to have a startle response to a
surprising noise, pause for a moment, and then be able to recover within
seconds. If this noise repeats itself over and over (for example, traffic,
beeping, fireworks, thunder), the dog should get used to or habituate to the
noise. If the dog is unable to habituate to the noise, this can lead to serious
sound sensitivities and other serious anxiety issues.
It has been suggested that noises that evoke an immediate defensive
response (meaning you need to prepare for danger) may not be as easy to
habituate to as noises that evoke a simple orienting response (meaning you
turn to look at the source of the noise). The most common noises that elicit a
fearful response in dogs—gunshots, fireworks, thunder, and engine noises—
are all loud (seventy decibels or greater), lack a specific sound pattern, and
are impulsive (consist of short bursts rather than sustained tones). These
noises may be more likely to cause an immediate defensive response because
they are sudden and loud.
As mentioned earlier, biologically, some noises will bypass the thinking
part of the brain and incite a fear response so the animal can react quickly.
This makes sense from an evolutionary perspective. If there is something in
the environment that might indicate danger (a loud, sudden, unfamiliar
noise), it increases your chances of survival to just act (run away) rather than
take the time to think about running away.
Phobia: A persistent, abnormal, intense fear of a stimulus that is out
of proportion to the stimulus
Sound sensitivities: The anxiety, fear, and phobia associated with
sounds
Stress: A term that is broad and nonspecific; most behaviorists agree
that the basic function of stress is to maintain a physiological and
psychological balance so that individuals can react in a healthy,
normal manner to life’s changes and stressors. Stress becomes
counterproductive when the physiological response is sustained or
activated too often.
Distress: A behavioral and physiological response that has harmful
effects on an animal’s welfare, both physiologically and emotionally
There are many myths that surround noise sensitivities in dogs. Some of the
more common ones are the following:
She is stupid.
She should just learn to get over it.
She will get better as she gets older.
She just needs to be better trained.
She just needs to be told who is boss.
Getting another dog who is not scared of noises will help her.
She learned it from me because I am scared of noises.
One of the more aggravating myths is that the dog is stupid. Intelligence
has nothing to do with anxiety. There are plenty of very intelligent people
who are afraid of spiders, flying, heights, and so on. In fact, from an
evolutionary perspective, one could argue that it is intelligent to have fears
about things that may hurt you. Often, the body’s biological fear responses
intentionally bypass the thinking part of the brain and tell you to act, so
intelligence is not a factor. If you are in trouble, this is not the time to assess
your options. If a man is running toward you with a gun, you would not
debate whether you should use your cell phone and waste valuable minutes to
call for help or use the nearby stairs to get away, even though it could
aggravate your arthritis. You’d just run! Sometimes it is safer to just react.
When the emotional system is kicked into high gear, you, a dog, or a cat
are not in the proper mental state to think or learn. Intelligence has nothing to
do with noise sensitivities.
Do dogs grow out of noise sensitivities? Although there are dogs who can
have mild reactions and eventually habituate to noises, it shouldn’t take
years. In general, the only time dogs seem to grow out of noise sensitivities is
when they reach an age where they:
have hearing loss and can no longer hear the noises that scare them;
start exhibiting signs of cognitive dysfunction
develop a painful condition such as arthritis and can no longer pace and
show other physical reactions, which is mistaken as a sign that they are
no longer anxious.
If you have a dog who has noise sensitivities, do not wait to see if she will
grow out of it. Get help. It is not fair to the dog to just try to wait it out. More
often than not, the reaction actually gets worse, not better.
Is there a connection between noise sensitivity and training? Being trained
just means a dog has learned what certain words or hand signals mean and
will comply with certain requests. Often it is essential that dogs know how to
perform certain behaviors so they can be used with a behavior modification
plan to help lessen the dog’s anxiety. But having a better recall or a perfect sit
does nothing to alleviate noise sensitivity.
In fact, if you have a dog who is pacing and you tell her to lie down and
she does, she may no longer be pacing but she may still be very anxious. The
anxiety doesn’t go away just because you’re not seeing it. Do not assume
because a dog will obey that she is not anxious or that an anxious dog just
needs to be better trained.
One of the most potentially damaging myths is the idea that the dog should
be punished for anxious or fearful behavior. The idea that a dog should be
punished often stems from the belief that the dog is “being bad” or is “trying
to be dominant” by not listening to you when you tell the dog to stop a
certain behavior (pacing, whining, and so on). But being anxious has
absolutely nothing to do with dominance or control. Using punishment will
make the animal more anxious and fearful in the long run. Certain
punishments may make a dog stop pacing because she is more scared of you
and the punishment than she is of the sound, but the pacing behavior is
simply being suppressed. The dog is still anxious on the inside and has now
learned that storms (or other noises) are even scarier because she gets
punished during them.
Punishment can range from verbal corrections to physical corrections.
Punishment is never okay to use on a fearful, scared, or anxious dog.
Is Will getting another dog help to alleviate noise sensitivities? In a recent
study, researchers found that having a dog who is not noise-sensitive together
in a home with a noise-sensitive dog did not help to reduce the reaction of the
noise-sensitive dog. There are many stories of canine patients with noise
sensitivities who live in a home with a dog without noise sensitivities, and the
unfearful dog has no positive influence on the fearful dog. Please do not take
on the responsibility of another dog if the sole purpose is to see if the new
dog will help the original dog with a noise-sensitivity issue.
I am afraid of noises and storms. Am I to blame for my dog’s noise
sensitivities? There are at least two studies that have found that a person’s
fearful response to noises does not cause a dog to become scared of noises.
In 2005, researchers Nancy Dreschel, DVM, Ph.D., and Douglas Granger,
Ph.D. looked both at fear behaviors and cortisol levels of nineteen dogs
exposed to thunderstorms via sound recordings. Cortisol is a hormone that
causes an increase in glucose production, and higher levels of it have been
associated with high levels of arousal. The results showed that cortisol levels
in dogs increased as much as 200 percent when the dogs heard the
thunderstorm noise, and, of course, the dogs also showed fear-related
behaviors. The way their owners behaved had no effect on these results. In
addition, a 2007 study looking at 2,458 noise-fearful dogs found that there
was no association between the presence of a fearful human and the presence
of a fearful dog.
How Do We Begin?
The best way to prevent your dog from having noise sensitivities is to
responsibly expose her to a variety of different sounds when she is young.
You can still do this if you have adopted an adult dog. You want to expose
your dog to a variety of sounds, initially at reasonable intensities, and make
sure these exposures are fun.
If you are out on a walk and hear sirens, give your dog treats during the
siren sounds. Any time it rains or thunders, make sure to play a game your
dog enjoys, like fetch or tug of war. In addition, you can always give your
dog a special, extremely delicious treat during storms so she associates those
noises with something fun. Can you imagine what fun it would be if every
time it rained someone came to your door with a chocolate cake and a
thousand-dollar check? You would surely be eager to answer the door in bad
weather. With the right rewards, you can encourage pups to be excited about
playing in the rain.
Another way to responsibly expose the dog to various sounds is to buy a
CD with various noises and play the sounds at low levels while playing with
your dog or giving her treats Another study by Dr. Daniel Mills at Lincoln University
evaluated the efficacy of using noise recordings along with dog-appeasing
pheromones to modify fearful behaviors. The end result:
Exposing dogs to noise recordings of the fearful stimuli in a specific manner
helped reduce their fear of fireworks. One year after the study, the owners
reported that their dogs remained improved.
Dr. Sharon Crowell-Davis, a veterinary behaviorist, and colleagues also
looked at using noise recordings, along with medication, to help dogs who
were fearful of thunderstorms. The results, once again, indicated these
treatments helped reduce the dogs’ fear of storms.
What Should I Do with My Terrified Dog During a Thunderstorm?
What you should do and can do maybe two very different things. If the
suggestions here do not help, seek help from your veterinarian or veterinary
behaviorist for your dog.
If your pet is scared during a thunderstorm, try offering her a new toy
that resembles her favorite type of toys. So if she likes to chew the
squeaky out of a squeaky toy, give her a new squeaky toy; if she likes to
rip the stuffing out of a stuffed animal, give her a new stuffed animal.
Play her favorite game (tug, chase, or whatever your dog loves).
Give her a special treat to work on—a long-lasting bone or a food puzzle
toy stuffed with yummy food (something tasty like peanut butter, not
boring, dry kibble).
Create a cozy place for the dog to rest, such as a closet corner or a
bathroom, and see if she does better in that environment. Ideally, you
should create this “zen” environment by teaching the dog to go there on
request when there is no scary noise. Associate this location with
calming activities, such as massage, and giving the dog treats for
remaining in a calm, relaxed down position.
Close the windows and cover them well to block the flashes of lightning
and soften the sound of thunder and rain.
Try a training session with the dog, such as asking her to review
behaviors she already knows, like “sit” and “down,” or have her perform
tricks. Use a very high-value food as a reward.
Some dogs may do better outside, so if you are up for it, put on your rain
gear and go for a walk.
Turn on some classical music to help drown out the sound of the rain and
thunder with a calming sound. (Some dogs may prefer rock and roll!)
You can also try a white-noise machine.
Spray dog-appeasing pheromones on a blanket and
massage your dog on the blanket, using long, slow strokes. Make sure
you spray the pheromones on the blanket fifteen minutes before using it.
Or during thunderstorm season, keep a pheromone diffuser plugged in
all the time and have your dog wear a pheromone collar.
Some dogs feel calmer when a family member puts a leash and perhaps
a head collar on them and holds the leash. (If this does not help your dog
calm down, take it off immediately.)
Some dogs may feel more comfortable in a crate. Keep in mind that a
the crate is not calming for all dogs, and many dogs will become much more
anxious when crated; using a crate is not appropriate for those
individuals.
If you know a storm is coming, try to engage your dog in activities
before she gets too anxious.
Avoiding Pitfalls and Staying on Track
If using a noise recording, play it at least two months before an event
Have your dog’s favorite toys and treats ready to redirect her attention.
Practice relaxation exercises in the dog’s safe haven.
Have calming music ready to play.
If you know none of these things have helped in the past, make an
appointment with your veterinarian or veterinary behaviorist to discuss
pharmacological or other nonpharmacological interventions.
What Did We Say?
As soon as you get your puppy or dog, begin to responsibly expose her
to sounds.
If you are getting your dog from a breeder, ask if either the mother or
the father has a history of noise sensitivities.
Dogs who have noise sensitivities should be treated humanely and with
respect. They are not stupid, nor are they trying to be dominant. They
should not be punished. They are experiencing an involuntary emotional
and physiological reaction to noises that they perceive as frightening.
Your approach to a serious behavior problem like noise sensitivities
should be no different from your approach to any other malady your dog
develops: Seek out help, advice, and treatment from a qualified
individual, who will help you formulate an appropriate, humane, and
a comprehensive plan to help you and your dog.
Some dogs respond to treatment very quickly, while others require more
time.
A behavior modification program using sound recordings is a very
effective treatment for noise sensitivities, but it may not work for all
dogs.
Medication can be very helpful and even necessary for some dogs.
Medication advice should be taken only from veterinarians or veterinary
behaviorists.
There are nonmedication aids that are worth trying. For more
information on alternatives, make an appointment with a veterinary
behaviorist.
Dogs deserve to live without fear and panic, and there are plenty of
humane solutions to help them do so. Implement responsible noise
training for your puppy. Think of it as a behavioral vaccine. If you do
this, your dog is less likely to develop noise sensitivities.
If your dog does develop noise sensitivities, know that there are
professionals out there who can help, and do not give up!

Continue Reading

Dogs

Dog Basic Training

Would be able to adapt to novel tasks. But there was only one way to
find out for sure.
Helen, eager to see how Callie would do with the training, helped me
load her into the car, and the three of us headed to CPT with the head coil to
see Mark work his magic.
Helen entered with Callie, while I placed the head coil on the floor.
Mark looked at it and nodded. “This should be easy. Did you bring
treats?”
From puppy training, I knew that soft treats are best. You can cut them
up into tiny pieces so the dog doesn’t fill up too quickly. And the dog can
consume them easily without getting distracted by crunching on a hard
biscuit. The only treats I could find around the house were some hot dogs that
had been pushed to the back of the refrigerator. I had no idea how long they’d
been there, but they smelled okay, and Callie loved them. I handed Mark a
baggie full of sliced-up hot dogs.
“First,” he said, “let’s start with the clicker.”
A training clicker is a small device about the size of a USB flash drive
that, unsurprisingly, makes a loud click when pressed. Dogs can hear the
clicker from across the room. The advantage of using one is that it always
makes the same sound, which is not the case with vocal commands. Because
it’s almost impossible to screw up, the clicker is a useful tool for beginners
like me. Its operation is simple: when the dog does something correct, you
click. For this to work, however, you first have to teach the dog that a click
equals a reward. This is classic classical conditioning. Just like Pavlov.
Callie tracked the bag of hot dogs as I handed it to Mark. Then she
dutifully sat at his feet, tail sweeping the floor. Mark clicked and immediately
gave her a piece of hot dog. Callie got even more excited. She could barely
sit.
At this point, what Callie was doing was unimportant. Mark
periodically clicked and handed her a reward. He was establishing the
association of each click with a transfer of reward, making it a conditioned
stimulus. It didn’t take long. A dozen click-rewards, and Callie understood
the association. With the meaning of the clicker established, Callie was ready
to learn a behavior. I could immediately see how the clicker was going to
make this easier.
Mark explained another advantage of using the clicker. “We are going
to shape her behavior. Initially, anything Callie does that is close to the
desired behavior will be rewarded. The clicker makes it absolutely clear to
her that she has done something correctly. This way, she won’t get
conditioned to just my voice or your voice.”
The clicker gives instantaneous feedback, making it clear to a dog that
she has done something good without wasting time fumbling for the treats.
Unlike a human, a dog’s memory for what she has just done appears to be
very limited. The longer the interval between the desired behavior and the
subsequent reward, the less likely the dog will make the association. This
phenomenon is called temporal discounting. Research in rats suggests that a
reward given four seconds after a desired behavior is roughly half as effective
as one given immediately. If the handler is deeply involved with the dog,
using hand signals and vocal commands, he might not be able to give a
reward for a while. This is especially true of complex behaviors. The clicker
solves this problem by giving instantaneous feedback.
Mark was beginning to lure Callie into the head coil. Reaching into the
coil with a hot dog in one hand and the clicker in the other, Mark had already
succeeded in getting Callie to place her nose inside. Each time she did so,
Mark clicked, praised her, and gave her a bit of hot dog.
With every click-reward, Mark pulled the food back a little bit, shaping
her behavior gradually. Within ten repetitions, he had Callie crouching in the
coil with her snout poking out the other end. Some gentle pressure on her
rump indicated that she should lie down in the coil. As soon as she did, Mark
clicked and exclaimed, “Good coil!” Callie wagged her tail and licked the hot
dog from his hand.
I couldn’t believe how quickly Mark had gotten Callie where she
needed to be.
“How is the positioning?” he asked.
Callie was lying down in a sphinx position in the coil. Her paws hung
over the near edge. She would need to move back a little bit.
“We’ll want her head in the center.” Mark nudged her back an inch and
clicked.
“You can shape her behavior at home too,” he said. “I think she’ll do
really well with this.”
A woman walked into CPT with a border collie.
“This is Melissa Cate,” Mark said. “Melissa runs some of our agility
classes at CPT. She’s interested in volunteering her dog for the MRI.”
“Mark told me about the Dog Project.” Pointing to her dog, she said,
“This is McKenzie.”
McKenzie was Melissa’s three-year-old border collie. Melissa had
begun agility competitions a few years earlier with her boxer, Zeke, who had
reached the highest ranks. Zeke was now eight years old and slowing down a
bit, so Melissa had gotten McKenzie as a puppy to keep competing in agility.
They had been going strong ever since.
McKenzie was leggy and lean, about thirty-five pounds, with a long,
thin head that would easily fit in the head coil. She trotted over to me and
stared long and hard. She quickly realized that I was not a herdable animal
and moved on to check out Helen.
Callie zoomed over and assumed a play bow with her front legs flat and
her rump in the air, tail wagging like a vibrating string. We let the two dogs
off-leash and they ran around the room. Callie did orbits around McKenzie,
who seemed indifferent to the newbie dog.
It was time for McKenzie’s try with the head coil. With a dog treat,
Melissa had no trouble coaxing her into the coil. Nibbling the food out of
Melissa’s hand, McKenzie appeared unaware of the coil altogether. In agility
competition, the dogs run through a serpentine tunnel, and McKenzie was
completely comfortable in an enclosed space.
After a few minutes, Melissa commanded McKenzie to lie down.
“Platz,” she said, using the German word for “down.” Mark explained that
German words are commonly used in dog training because of the popular
Schutzhund competitions. These began as training programs and tests for
German shepherds but evolved into a full-fledged sport involving tracking,
obedience, and protection phases.
With McKenzie lying down in the head coil, Melissa backed away to
the other side of the room. McKenzie didn’t budge. In fact, she stayed
motionless for a solid minute. When I saw what a well-trained dog like
McKenzie could do, I knew we could really do this. If the dogs would go into
the head coil, they would go into the MRI.


Continue Reading

Dogs

The Scanner Dilemma

H I L E A N D R E W A N D I W E R E pretty sure we could figure out how to
scan a dog’s brain, we had neglected to consider a minor, though
important, detail: Where? The Dog Project needed a home.
The lab had been captivated with the “big question”—figuring out what
goes on in a dog’s brain. Details like the type of brain scanner, or where to
find it, were just that: details. Up until this point, I hadn’t been concerned.
The best part of being a scientist is when the ideas are coming so fast and
furious that you can’t even write them down. You don’t have time to worry
about details. They just get in the way.
But eventually, we had to confront the practical aspects of pulling this
off. And the first detail was finding an MRI facility that would let us bring
dogs into its scanner.
Yerkes National Primate Research Center, located about a mile from the main
Emory campus was our first choice for MRI scanning. Nestled in a valley
lined with southern pines, Yerkes seemed ideal. It was a short drive from the
lab, so we could easily move our equipment there. And because it was off the
main street, it was also quiet and peaceful. The last thing we wanted was to
scare a potential canine subject with a trip through a busy intersection. From
a dog’s perspective, I imagined Yerkes would look like a walk in the woods.
Yerkes also specialized in the study of animals—primarily monkeys.
Andrew and I congratulated each other on our good fortune. We had come up
with the idea of scanning the brain of a fully awake dog, and one of the
premier facilities for the study of animals turned out to be right in our
backyard. In fact, there are only eight such facilities in the United States.
Yerkes even had an MRI scanner dedicated specifically to the study of
animals. A friend and colleague of mine, Leonard Howell, was director of the
Yerkes Imaging Center and invited us to take a look at how they scan
monkeys’ brains.
Although the Yerkes MRI center is unusual in the sense that it was
purposely built for the study of how primate brains function, it is actually not
that unusual to have such a facility at a veterinary school or even at a high tech
veterinarian hospital. Any and all medical diagnostic tests performed on
humans are now also done on animals. The challenge with obtaining an MRI
of an animal, however, is that the subject must remain absolutely still. In a
veterinary setting, this means sedating the animal with medication. But
sedating an animal means that you can no longer study how the brain
functions.
Leonard had pioneered a new approach to studying monkeys’ brains.
Instead of sedating the monkeys, he had figured out how to scan their brains
while fully awake. This was a big deal for neuroscientists. When you
administer drugs that render the subject unconscious, you change brain
function in a major way. How this happens is not really understood. While
the unconscious state is interesting for its own sake, most neuroscientists
spend their time trying to figure out how the conscious brain works. Having
conscious subjects, animals or human is critical.
Working with monkeys is a dangerous business. Monkeys are mean.
Not if-you-don’t-give-me-food-I’ll-ignore-you mean. More like if you don’t give
me-food-I-will-rip-it-from-your-hand-and-eat-your-finger-and-chew off-
your-face-for-dessert mean. This presents certain logistical problems for
scanning their brains, especially if they are to remain fully awake.
What’s more, because they are closely related to humans, diseases can
pass between the species with ease. For instance, HIV, the virus that causes
AIDS is believed to have originated in African chimpanzees. Monkeys
harbor a strain of the herpes virus that is fatal to humans, which can be
passed along if, for example, one spits on you, which monkeys often do. The
monkeys also have to be protected from us. If humans can catch diseases
from monkeys, the opposite is also true. Monkeys are particularly susceptible
to tuberculosis. For all of these reasons, scientists must take extraordinary
safety precautions to work around monkeys.
Andrew and I made special arrangements to see how Leonard and his
team scanned the brains of fully awake monkeys. After registering at the
security desk, we were escorted through a series of keyed doors and
deposited in a changing room.
“You need to gown up,” Leonard’s assistant instructed. “From this
point forward, everyone must be fully protected. This means gown, face
mask, and eye shield.”
The so-called eye shields covered our faces entirely and were
claustrophobic. They also had a tendency to fog up. The face masks were the
surgical type. The combination of shield and mask made a speech about as
effective as talking into a pillow.
Our first stop was the training lab. Three oven-sized stainless steel
boxes lined one wall. They resembled small refrigerators, but the hasp-type
handle suggested something akin to a pottery kiln.
“These are the training boxes,” the assistant said. Opening one revealed
a sterile interior with white enameled walls and a cubby for devices allowing
tubes and wires to snake out to various pieces of monitoring equipment.
On the other side of the room sat an upright tube constructed from PVC
plumbing material. A foot in diameter and three feet tall, the top end was
capped with clear Plexiglas. A four-inch slot was cut in the center of the cap,
and a plastic shelf sat below the slot.
The assistant explained, “This is the restraint device. The monkey has a
collar around its neck that fits into the slot. With its head poking through, it
rests its chin on the shelf.”
Andrew pointed to a pair of hoses that were attached to the bottom of
the device. “What are these for?”
“Waste drainage.”
Pushing the resulting image out of my mind, I asked, “How do you get
the monkeys to go in there?”
The assistant pointed to a metal rod on the wall. “That affixes to their
collar, and then we can steer them into the device from a safe distance.”
So far, none of this was looking appropriate for the Dog Project. I kept
silent, though, still eager to learn anything that might be useful for us. The
device kept the monkey from escaping, but it wasn’t clear what would keep
its head still.
The assistant pulled a pink block of foam from a shelf.
“This is how we immobilize the head,” he explained. “First, we make a
mold of the monkey’s head, which is then used to make a positive cast with
plaster. From that, we use a gel-type material to make a soft cast, which fits
snugly around its head. We cut holes for the eyes, nose, and mouth. This gets
clamped to the restraint device.”
“And the monkeys cooperate with this?” I asked.
“They learn,” he replied. “We shape their behavior through rewards. It
takes about six months to train a monkey to go into the restraint device.”
“What are the boxes for?” Andrew asked.
“Those are conditioning boxes. Once the monkeys are trained to go into
the restraint device, the whole rig is placed in the box. We then train them
with lights and sounds.”
“Trained for what?” I asked.
“To get addicted to drugs.”
Right. Leonard’s research group was studying the biology of drug
addiction. To understand addiction, you need to look at the whole process,
from the first time somebody uses a drug to the point he becomes addicted.
Because it is unethical, obviously, to get people addicted to drugs, Leonard
uses monkeys as a stand-in.
The assistant continued. “Once they are trained to associate cues with
drugs, we take the whole rig to the MRI scanner so we can see what is going
on in their brains while they are craving drugs. Are you ready to go down to
the scanner?”
I couldn’t wait to get out of there.
Because the MRI’s strong magnetic field affects computer equipment, the
control room is partitioned from the main scanner room. When we entered, a
young woman draped in a surgical gown was staring intently at a computer
screen with several brain images.
She was not pleased to have visitors.
“Who are you?” she snapped at me. “Have you had a TB test?”
I honestly couldn’t remember when I had last been tested for
tuberculosis. Fortunately, Andrew distracted her.
“I have!” he announced cheerfully.
Leonard’s assistant explained that we were there to observe MRI scans
of monkeys. The monkeys being scanned that particular day was from a
different research lab. Because they had not gone through Leonard’s
behavioral training, these monkeys had received a heavy dose of sedation.
One monkey, surrounded by three veterinary technicians, was in the scanner
when we entered, attached to monitors that reported vital signs like heart rate,
breathing, and body temperature. Another monkey was on a cart, recovering
from anesthesia. I almost walked right by it, until it started twitching with
muscle spasms as the sedation wore off.
We took the opportunity to explain what we were trying to do with the
Dog Project. The vet techs were not enthusiastic.
“You’re going to have to monitor them,” one said. “Vital signs and core
body temperature.”
“How do you do that?” Andrew asked.
“Rectal probe.”
“Why would we do that to a dog that isn’t even sedated?” I asked.
“It’s standard operating policy to fully monitor all animals undergoing a
procedure,” she replied.
“But we’re not doing a procedure,” I protested. “The dogs will be
trained to go into the scanner willingly.”
She wasn’t buying it. “Who is going to be with the dogs?”
“Us, the dog trainer, and the owner.”
She shook her head. “I suppose you two are okay because you’re
university employees, but no outside visitors.”
Although it was clear there was no convincing this woman, I pressed
on. “Look, would you volunteer your dog to be in an experiment without
being present?”
“I suppose not. Even so, you’ll have to convince the review
committees.”
Andrew and I had seen enough. It surprised me that one of the nation’s
premier animal research facilities wasn’t more encouraging about the Dog
Project. But we were more determined than ever to find the right home for it.
When I got home that night, Callie and Lyra greeted me with unusual
attention. Instead of jumping up and down as they usually did, they sniffed
my feet intently. As I walked through the house they trailed me from a
respectable distance, focused on my feet.
They knew. I had tracked the monkey stink home with me.
Logistical problems aside, I realized there was no way we could do the
scanning at Yerkes with all those monkeys.

Continue Reading

Dogs

What It’s Like to Be a Dog

As with most scientific developments, it started as a series of random
thoughts and inferences that eventually led to an aha moment. While
Newton’s death planted the seed of an idea, it was my own discomfort around
groups of people that helped it grow.
For the past fifteen years, my lab has used brain-scanning technology to
understand how the human reward system works. The main tool that we use
is magnetic resonance imaging or MRI. About the size of a car, an MRI
scanner is pretty much a large tube wrapped in miles of wire. When
electricity is sent through the wire, it creates a powerful magnetic field that
can be used to see inside of a person’s brain. A standard MRI, like what you
would get if you went to a hospital, takes a picture of your brain. Scientists
soon discovered that if you took several pictures of the brain in rapid-fire, you
could see the brain in action. This is called functional MRI, or fMRI, and it
opened the black box of the human mind. With fMRI, we can measure
activity inside the brain while a person is actually doing something, like
reading or doing math or even while experiencing different types of
emotions. This allows scientists to figure out how the brain actually works
(hence the functional in fMRI).
As the leader of a research lab, it is one of my duties to hold an annual
lab party. You would think that this would be an enjoyable activity.
Inevitably it is a source of stress in our household. The dogs don’t help either.
Like me, the dogs were never properly socialized to large groups of
people, something for which I take full blame. Since we don’t have parties
often, it seemed unreasonable to make the dogs learn how to behave in such
situations. Nevertheless, one cannot completely abdicate these social
necessities, as with our once-a-year gathering of lab members.
Ignoring my antipathy, Kat and the girls threw themselves into the
preparations for the annual party. They brought all the chairs out of the
dining room and created a semicircular seating arrangement in the family
room. Nothing unusual about this, presuming that the guests are able adults
who can manage conversation while eating and drinking without tables to
place their food upon. It does not, however, account for dogs either
underfoot, in the case of Callie, or swishing big, fluffy tails around, in the
case of Lyra.
If everyone was a dog person, these parties wouldn’t present a problem.
In recent years, I have certainly become more selective in allowing people to
work in the lab, and this includes my asking whether he or she is a dog
person or, second best, a cat person. But can you really trust someone who
doesn’t have a pet? Despite my best efforts to fill the lab with animal lovers, I
have no control over spouses and partners.
Kat wanted to lock Lyra and Callie in the bedroom when the guests
arrived. The dogs weren’t accustomed to being locked up, so I feigned
ignorance and let them have free run of the party. As guests arrived, Callie
would give a perfunctory woof. Lyra just grinned and wagged her tail
excessively as the people filed in.
I could trust the dog people in the lab to keep an eye on the dogs and
prevent them from swiping food, so I slipped out to help Kat in the kitchen.
She was dishing up the hors d’oeuvres and pouring drinks. The team, while
diverse in terms of background, was predominantly American, with the
exception of one lab member from India. It was at the moment I stepped into
the kitchen when he arrived with his wife.
Their entrance was marked in dramatic fashion by an ear-piercing
“Eeeeeee! Eeeeeee! Eeeeeee!”
I rushed out of the kitchen. My colleague’s wife, wrapped in a lovely
sari had backed herself into a corner, shrieking like a bird at the mere sight
of the dogs.
This behavior baffled Callie, so she paid no further notice to her and
moved on to look for food droppings. Lyra, on the other hand, found these
vocalizations highly stimulating. She tracked right to the sound and starting
jumping up and down and barking in what appeared to me to be a request to
play. But the grimace of terror on the woman’s face indicated no such desire.
I grabbed Lyra by the collar and led her to the bedroom.
“Sorry, girl. You can’t play tonight.”
What did Lyra think was the reason that woman was screaming? If Lyra
were a person, I could have simply asked her. How else could I find out what
was going through her mind?
To truly know what a dog is thinking, you would have to be a dog.
The question of what a dog is thinking is actually an old metaphysical
debate, which has its origins in Descartes’s famous saying cogito ergo sum
—“I think, therefore I am.” Our entire human experience exists solely inside
our heads. Photons may strike our retinas, but it is only through the activity
of our brains that we have the subjective experience of seeing a rainbow or
the sublime beauty of a sunset over the ocean. Does a dog see those things?
Of course. Do they experience them the same way? Absolutely not.
When Lyra was jumping and barking at the woman wrapped in purple,
with a red dot on her forehead, Lyra experienced the same things at a
primitive level that I did. Purple. Red. Screaming. Those are the sensory
primitives. They originate in photons bouncing off dyes, pressure waves in
the air around the woman’s vocal cords. But my brain interprets those events
one way and Lyra’s brain another.
Observing Lyra’s behavior doesn’t tell us what she was thinking. From
past experience, I knew that Lyra barked and jumped in response to different
things. She barks when we’re eating. In that context, a natural assumption
would be that she wants food too. But she also barks after dropping a tennis
ball at my feet. I had no comparable frame of reference for what had attracted
her to the screaming woman that night at the party.
The question of what it is like to be a dog could be approached from
two very different perspectives. The hard approach asks the question: What is
it like for a dog to be a dog? If we could do that, then all the questions about
why a dog behaves the way it does would become clear. The problem with
being a dog, though, is that we would have no language to describe what we
felt. The best we can do is ask the related, but substantially easier question:
What would it be like for us to be a dog?
By imagining ourselves in the skin of another animal, we can recast
questions of behavior into their human equivalent. The question of why Lyra
harassed the party guest becomes: If I were Lyra, why would I bark at that
woman? Framed that way, we can form all sorts of speculations for dog
behavior.
Many authors have written about the dog mind, and some have even
attempted to answer the types of questions I have posed. I will not review this
vast literature. I will, however, point out that much of it is based on two
potentially flawed assumptions—both stemming from the paradox of getting
into a dog’s mind without actually being a dog.
The first flaw comes from the human tendency to anthropomorphize or
project our own thoughts and feelings onto things that aren’t ourselves. We
can’t help it. Our brains are hardwired to project our thoughts onto other
people. This is called mentalizing, and it is critical for human social
interactions. People are able to interact with each other only because they are
constantly guessing what other people are thinking. The brevity of text
messages, for example, and the fact that we are able to communicate with
less than 140 characters at a time work because people maintain mental
models of each other. The actual linguistic content of most text exchanges is
minimal. And because humans have common elements of culture, we tend to
react in fairly similar ways. For example, if I watch a movie that makes me
sad, I can use my own reaction to intuit that the people sitting around me are
feeling the same way. I could even start a conversation with a complete
stranger based on our shared experience, using my own thoughts as a starting
point. But dogs are not the same as humans, and they certainly don’t have a
shared culture as we do. There is no avoiding the fact that when we observe
dog behavior, we view it through the filter of the human mind. Unfortunately,
much of dog literature says more about the human writer than the dog.
The second flaw is the reliance on wolf behavior to interpret dog
behavior, termed automorphism. While it is true that dogs and wolves share a
common ancestor, that does not mean that dogs are descended from wolves.
This is an important distinction. The evolutionary trajectories of wolves and
dogs diverged when some of the “wolf-dogs” started hanging out with protohumans.
Those that stuck around became dogs, and those that stayed away
became modern wolves. Modern wolves behave differently from dogs, and
they have very different social structures. Their brains are different too.
Interpreting dog behavior through the lens of wolf behavior is even worse
than anthropomorphizing: it’s a human anthropomorphizing wolf behavior
and using that flawed impression as an analogy for dog behavior.
Wolf analogies have led to many flawed training strategies based on the
idea that the human must be the “pack leader,” an approach most commonly
associated with Cesar Millan. Unfortunately, there is no scientific basis for
using the wolf’s social structure as a model for the dog-human relationship.
Dogs can’t talk, and we can’t transport ourselves into a dog’s mind to know
what its subjective experience is. Where I see a happy golden retriever
playfully jumping up and down, someone else might see a hungry dog
planning to eat her for dinner. So what can we do to better know a dog’s
mind?
Although I hadn’t yet made the connection at the party, I would soon
realize that the solution had been right in front of me all along: brain imaging.
Because all mammalian brains have substantially similar parts, a map of
canine brain activation could be referenced to its human equivalent. For
instance, if we saw activation in the reward center of the dog brain, that could
be interpreted through human experiments that result in similar activity. With
human experiments, we have a reasonably good idea of what happened to
create a particular pattern of brain activation. We know, for example, that
activity in the visual part of the brain can be caused either by photons hitting
the retina or by the person mentally imagining a scene with his eyes closed.
Similarly, if we observed activity in the visual part of a dog’s brain, and the
dog wasn’t looking at anything, we could reasonably assume that it was
forming a mental image of something. Dogs might have imaginations too!
The mapping between the brains of different species is called a functional
homology. It means that a subjective experience like imagination can map
onto both a human brain and a dog brain. The patterns of activity in the two
brains would illustrate how to transform one type of brain into the other.
Philosophers dismiss the question of what it is like to be a dog as
unanswerable, but functional homologies between dog and human brains
could provide the missing link. Although brain imaging wouldn’t tell us what
it is like for a dog to be a dog, it could provide a road map—a brain map—of
what it would be like for a human to be a dog, without the bias of the human
interpreter. If it worked, brain imaging could end up being a canine neural
translator. We could go way beyond the question of why Lyra was being
obnoxious at the party. If we could map our thoughts and feelings onto the
dog brain, we could get right to the heart of the dog-human relationship: Do
dogs love us?
It all comes down to reciprocity. If the dog-human relationship is
predominantly one-sided, with humans projecting their thoughts onto the dog
vacuously staring up at his master in the hopes of receiving a doggie treat,
then the dog is not much better than a big teddy bear—a warm, soft,
comforting object.
But what if the dog reciprocates in the relationship? Do dogs have some
concept of humans as something more than food dispensers? Simply knowing
that human feelings toward dogs are reciprocated in some way, even if only
partially, changes everything. It would mean that dog-human relationships
belong on the same plane as human-human relationships.
None of these questions can be answered simply by observing dogs’
behavior. They go to the heart of dogs’ subjective experience of the world
and, in particular, their subjective experience of us.
My colleague and his wife didn’t stay long. Even with the dogs locked away
we could hear Lyra barking in the bedroom above the din of the party.
Nobody was surprised when they were the first to say good-bye.
Once they left, I let the dogs out. Lyra ran to the remaining guests and,
in her state of excitement, puked up something foamy and green. The partiers
watched in disgust as Callie darted over to slurp it up.
From the chorus of “Oooh, gross!” it was clear even the animal lovers
were aghast at our dogs’ behavior. An exodus ensued.
And that is why we no longer hold lab parties at our house.

Continue Reading